These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23033320)

  • 1. Resisting sarcolemmal rupture: dystrophin repeats increase membrane-actin stiffness.
    Sarkis J; Vié V; Winder SJ; Renault A; Le Rumeur E; Hubert JF
    FASEB J; 2013 Jan; 27(1):359-67. PubMed ID: 23033320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the central domain of dystrophin acts to bridge F-actin to sarcolemmal lipids.
    Mias-Lucquin D; Dos Santos Morais R; Chéron A; Lagarrigue M; Winder SJ; Chenuel T; Pérez J; Appavou MS; Martel A; Alviset G; Le Rumeur E; Combet S; Hubert JF; Delalande O
    J Struct Biol; 2020 Jan; 209(1):107411. PubMed ID: 31689503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin.
    Legardinier S; Raguénès-Nicol C; Tascon C; Rocher C; Hardy S; Hubert JF; Le Rumeur E
    J Mol Biol; 2009 Jun; 389(3):546-58. PubMed ID: 19379759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrin-like repeats 11-15 of human dystrophin show adaptations to a lipidic environment.
    Sarkis J; Hubert JF; Legrand B; Robert E; Chéron A; Jardin J; Hitti E; Le Rumeur E; Vié V
    J Biol Chem; 2011 Sep; 286(35):30481-30491. PubMed ID: 21712383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-actinin-2 is a new component of the dystrophin-glycoprotein complex.
    Hance JE; Fu SY; Watkins SC; Beggs AH; Michalak M
    Arch Biochem Biophys; 1999 May; 365(2):216-22. PubMed ID: 10328815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol favors the anchorage of human dystrophin repeats 16 to 21 in membrane at physiological surface pressure.
    Ameziane-Le Hir S; Raguénès-Nicol C; Paboeuf G; Nicolas A; Le Rumeur E; Vié V
    Biochim Biophys Acta; 2014 May; 1838(5):1266-73. PubMed ID: 24440661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between dystrophin and the sarcolemma membrane.
    Chamberlain JS; Corrado K; Rafael JA; Cox GA; Hauser M; Lumeng C
    Soc Gen Physiol Ser; 1997; 52():19-29. PubMed ID: 9210217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin.
    Rybakova IN; Patel JR; Ervasti JM
    J Cell Biol; 2000 Sep; 150(5):1209-14. PubMed ID: 10974007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of dystrophin:effects on actin binding.
    Senter L; Ceoldo S; Petrusa MM; Salviati G
    Biochem Biophys Res Commun; 1995 Jan; 206(1):57-63. PubMed ID: 7818551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ischemic loss of sarcolemmal dystrophin and spectrin: correlation with myocardial injury.
    Armstrong SC; Latham CA; Shivell CL; Ganote CE
    J Mol Cell Cardiol; 2001 Jun; 33(6):1165-79. PubMed ID: 11444921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of dystrophin with cytoskeletal proteins: binding to talin and actin.
    Senter L; Luise M; Presotto C; Betto R; Teresi A; Ceoldo S; Salviati G
    Biochem Biophys Res Commun; 1993 Apr; 192(2):899-904. PubMed ID: 8484792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins.
    Abramovici H; Hogan AB; Obagi C; Topham MK; Gee SH
    Mol Biol Cell; 2003 Nov; 14(11):4499-511. PubMed ID: 14551255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19.
    Stone MR; O'Neill A; Catino D; Bloch RJ
    Mol Biol Cell; 2005 Sep; 16(9):4280-93. PubMed ID: 16000376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunocytochemical study of dystrophin at the myotendinous junction.
    Samitt CE; Bonilla E
    Muscle Nerve; 1990 Jun; 13(6):493-500. PubMed ID: 2195339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dystrophin As a Molecular Shock Absorber.
    Le S; Yu M; Hovan L; Zhao Z; Ervasti J; Yan J
    ACS Nano; 2018 Dec; 12(12):12140-12148. PubMed ID: 30457830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plectin 1 links intermediate filaments to costameric sarcolemma through beta-synemin, alpha-dystrobrevin and actin.
    Hijikata T; Nakamura A; Isokawa K; Imamura M; Yuasa K; Ishikawa R; Kohama K; Takeda S; Yorifuji H
    J Cell Sci; 2008 Jun; 121(Pt 12):2062-74. PubMed ID: 18505798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an understanding of the dystrophin-glycoprotein complex: linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers.
    Ohlendieck K
    Eur J Cell Biol; 1996 Jan; 69(1):1-10. PubMed ID: 8825019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utrophin lacks the rod domain actin binding activity of dystrophin.
    Amann KJ; Guo AW; Ervasti JM
    J Biol Chem; 1999 Dec; 274(50):35375-80. PubMed ID: 10585405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dystrophin binding to nonmuscle actin.
    Renley BA; Rybakova IN; Amann KJ; Ervasti JM
    Cell Motil Cytoskeleton; 1998; 41(3):264-70. PubMed ID: 9829780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dystrophin upregulation in pressure-overloaded cardiac hypertrophy in rats.
    Maeda M; Biro S; Kamogawa Y; Hirakawa T; Setoguchi M; Tei C
    Cell Motil Cytoskeleton; 2003 May; 55(1):26-35. PubMed ID: 12673596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.