These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 23033493)
1. Tibet is one of the centers of domestication of cultivated barley. Dai F; Nevo E; Wu D; Comadran J; Zhou M; Qiu L; Chen Z; Beiles A; Chen G; Zhang G Proc Natl Acad Sci U S A; 2012 Oct; 109(42):16969-73. PubMed ID: 23033493 [TBL] [Abstract][Full Text] [Related]
2. Tibet as a potential domestication center of cultivated barley of China. Ren X; Nevo E; Sun D; Sun G PLoS One; 2013; 8(5):e62700. PubMed ID: 23658764 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Dai F; Chen ZH; Wang X; Li Z; Jin G; Wu D; Cai S; Wang N; Wu F; Nevo E; Zhang G Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13403-8. PubMed ID: 25197090 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. Cai S; Wu D; Jabeen Z; Huang Y; Huang Y; Zhang G PLoS One; 2013; 8(7):e69776. PubMed ID: 23922796 [TBL] [Abstract][Full Text] [Related]
5. Origin and evolution of qingke barley in Tibet. Zeng X; Guo Y; Xu Q; Mascher M; Guo G; Li S; Mao L; Liu Q; Xia Z; Zhou J; Yuan H; Tai S; Wang Y; Wei Z; Song L; Zha S; Li S; Tang Y; Bai L; Zhuang Z; He W; Zhao S; Fang X; Gao Q; Yin Y; Wang J; Yang H; Zhang J; Henry RJ; Stein N; Tashi N Nat Commun; 2018 Dec; 9(1):5433. PubMed ID: 30575759 [TBL] [Abstract][Full Text] [Related]
6. Most Tibetan weedy barleys originated via recombination between Btr1 and Btr2 in domesticated barley. Gao G; Yan L; Cai Y; Guo Y; Jiang C; He Q; Tasnim S; Feng Z; Liu J; Zhang J; Komatsuda T; Mascher M; Yang P Plant Commun; 2024 May; 5(5):100828. PubMed ID: 38297838 [TBL] [Abstract][Full Text] [Related]
7. Elucidation of the origin of 'agriocrithon' based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication. Pourkheirandish M; Kanamori H; Wu J; Sakuma S; Blattner FR; Komatsuda T Plant J; 2018 May; 94(3):525-534. PubMed ID: 29469199 [TBL] [Abstract][Full Text] [Related]
8. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley. Wang Y; Ren X; Sun D; Sun G Sci Rep; 2016 Oct; 6():36122. PubMed ID: 27786300 [TBL] [Abstract][Full Text] [Related]
9. Population genetics and phylogenetic analysis of the vrs1 nucleotide sequence in wild and cultivated barley. Ren X; Wang Y; Yan S; Sun D; Sun G Genome; 2014 Apr; 57(4):239-44. PubMed ID: 25033083 [TBL] [Abstract][Full Text] [Related]
10. On the origin and domestication history of Barley (Hordeum vulgare). Badr A; Müller K; Schäfer-Pregl R; El Rabey H; Effgen S; Ibrahim HH; Pozzi C; Rohde W; Salamini F Mol Biol Evol; 2000 Apr; 17(4):499-510. PubMed ID: 10742042 [TBL] [Abstract][Full Text] [Related]
11. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Zeng X; Long H; Wang Z; Zhao S; Tang Y; Huang Z; Wang Y; Xu Q; Mao L; Deng G; Yao X; Li X; Bai L; Yuan H; Pan Z; Liu R; Chen X; WangMu Q; Chen M; Yu L; Liang J; DunZhu D; Zheng Y; Yu S; LuoBu Z; Guang X; Li J; Deng C; Hu W; Chen C; TaBa X; Gao L; Lv X; Abu YB; Fang X; Nevo E; Yu M; Wang J; Tashi N Proc Natl Acad Sci U S A; 2015 Jan; 112(4):1095-100. PubMed ID: 25583503 [TBL] [Abstract][Full Text] [Related]
12. Patterns of Evolutionary Trajectories and Domestication History within the Genus Hordeum Assessed by REMAP Markers. Bonchev G; Dusinský R; Hauptvogel P; Švec M J Mol Evol; 2017 Mar; 84(2-3):116-128. PubMed ID: 28168328 [TBL] [Abstract][Full Text] [Related]
13. Genetic diversity analysis of Tibetan wild barley using SSR markers. Feng ZY; Liu XJ; Zhang YZ; Ling HQ Yi Chuan Xue Bao; 2006 Oct; 33(10):917-28. PubMed ID: 17046592 [TBL] [Abstract][Full Text] [Related]
14. Differences in phytase activity and phytic acid content between cultivated and Tibetan annual wild barleys. Dai F; Qiu L; Xu Y; Cai S; Qiu B; Zhang G J Agric Food Chem; 2010 Nov; 58(22):11821-4. PubMed ID: 21047062 [TBL] [Abstract][Full Text] [Related]
15. Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Kilian B; Ozkan H; Kohl J; von Haeseler A; Barale F; Deusch O; Brandolini A; Yucel C; Martin W; Salamini F Mol Genet Genomics; 2006 Sep; 276(3):230-41. PubMed ID: 16758198 [TBL] [Abstract][Full Text] [Related]
16. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content. Wang Y; Ren X; Sun D; Sun G Front Plant Sci; 2015; 6():803. PubMed ID: 26483818 [TBL] [Abstract][Full Text] [Related]
17. [Genetic diversity of wild close relatives of barley in Tibet of China revealed by AFLP]. Zhang D; Ding Y Yi Chuan; 2007 Jun; 29(6):725-30. PubMed ID: 17650490 [TBL] [Abstract][Full Text] [Related]
18. Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Morrell PL; Clegg MT Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3289-94. PubMed ID: 17360640 [TBL] [Abstract][Full Text] [Related]
19. Genetic diversity analysis of wild close relatives of barley from Tibet and the Middle East by ISSR and SSR markers. Wang A; Yu Z; Ding Y C R Biol; 2009 Apr; 332(4):393-403. PubMed ID: 19304270 [TBL] [Abstract][Full Text] [Related]
20. A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Azhaguvel P; Komatsuda T Ann Bot; 2007 Nov; 100(5):1009-15. PubMed ID: 17638711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]