These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 23033861)
21. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Zhao JZ; Cao J; Li Y; Collins HL; Roush RT; Earle ED; Shelton AM Nat Biotechnol; 2003 Dec; 21(12):1493-7. PubMed ID: 14608363 [TBL] [Abstract][Full Text] [Related]
22. Characterization of Toxin Complex Gene Clusters and Insect Toxicity of Bacteria Representing Four Subgroups of Pseudomonas fluorescens. Rangel LI; Henkels MD; Shaffer BT; Walker FL; Davis EW; Stockwell VO; Bruck D; Taylor BJ; Loper JE PLoS One; 2016; 11(8):e0161120. PubMed ID: 27580176 [TBL] [Abstract][Full Text] [Related]
23. [Importance of five genes presented in Xenorhabdus nematophilus BP toxin gene cluster to its insecticidal activity]. Cui L; Qiu L; Xin Z; Fang Y; Pang Y Wei Sheng Wu Xue Bao; 2003 Dec; 43(6):747-52. PubMed ID: 16276896 [TBL] [Abstract][Full Text] [Related]
24. [Expression and synergism of two cry insecticidal protein genes in Pseudomonas fluorescens]. Ding Z; Zhang J; Song F; Huang D; Li J Wei Sheng Wu Xue Bao; 2000 Dec; 40(6):573-8. PubMed ID: 12549049 [TBL] [Abstract][Full Text] [Related]
25. Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. Haas D; Keel C Annu Rev Phytopathol; 2003; 41():117-53. PubMed ID: 12730389 [TBL] [Abstract][Full Text] [Related]
26. Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens strain CHAO in natural soil. Keel C; Ucurum Z; Michaux P; Adrian M; Haas D Mol Plant Microbe Interact; 2002 Jun; 15(6):567-76. PubMed ID: 12059105 [TBL] [Abstract][Full Text] [Related]
27. Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. Arrebola E; Aprile FR; Calderón CE; de Vicente A; Cazorla FM Int Microbiol; 2022 Nov; 25(4):679-689. PubMed ID: 35670867 [TBL] [Abstract][Full Text] [Related]
28. Impact of 2,4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the roots of field-grown sugar beet seedlings. Moënne-Loccoz Y; Tichy HV; O'Donnell A; Simon R; O'Gara F Appl Environ Microbiol; 2001 Aug; 67(8):3418-25. PubMed ID: 11472913 [TBL] [Abstract][Full Text] [Related]
29. Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. de Werra P; Baehler E; Huser A; Keel C; Maurhofer M Appl Environ Microbiol; 2008 Mar; 74(5):1339-49. PubMed ID: 18165366 [TBL] [Abstract][Full Text] [Related]
30. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Ruiz de Escudero I; Estela A; Porcar M; Martínez C; Oguiza JA; Escriche B; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jul; 72(7):4796-804. PubMed ID: 16820473 [TBL] [Abstract][Full Text] [Related]
31. Contribution of the Global Regulator Gene gacA to Persistence and Dissemination of Pseudomonas fluorescens Biocontrol Strain CHA0 Introduced into Soil Microcosms. Natsch A; Keel C; Pfirter HA; Haas D; Défago G Appl Environ Microbiol; 1994 Jul; 60(7):2553-60. PubMed ID: 16349332 [TBL] [Abstract][Full Text] [Related]
32. Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera littoralis to the Bacillus thuringiensis Vip3Aa16 toxin. Abdelkefi-Mesrati L; Boukedi H; Chakroun M; Kamoun F; Azzouz H; Tounsi S; Rouis S; Jaoua S J Invertebr Pathol; 2011 Jul; 107(3):198-201. PubMed ID: 21600212 [TBL] [Abstract][Full Text] [Related]
33. Isolation and identification of rhizospheric pseudomonads with insecticidal effects from various crops in Khuzestan Province, Iran. Azarnoosh R; Yarahmadi F; Keshavarz-Tohid V; Rajabpour A J Invertebr Pathol; 2024 Jun; 204():108099. PubMed ID: 38556196 [TBL] [Abstract][Full Text] [Related]
34. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Ramette A; Frapolli M; Fischer-Le Saux M; Gruffaz C; Meyer JM; Défago G; Sutra L; Moënne-Loccoz Y Syst Appl Microbiol; 2011 May; 34(3):180-8. PubMed ID: 21392918 [TBL] [Abstract][Full Text] [Related]
35. A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. Frapolli M; Moënne-Loccoz Y; Meyer J; Défago G FEMS Microbiol Ecol; 2008 Jun; 64(3):468-81. PubMed ID: 18393988 [TBL] [Abstract][Full Text] [Related]
36. Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Ramette A; Frapolli M; Défago G; Moënne-Loccoz Y Mol Plant Microbe Interact; 2003 Jun; 16(6):525-35. PubMed ID: 12795378 [TBL] [Abstract][Full Text] [Related]
37. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae. Porta H; Jiménez G; Cordoba E; León P; Soberón M; Bravo A Insect Biochem Mol Biol; 2011 Jul; 41(7):513-9. PubMed ID: 21621616 [TBL] [Abstract][Full Text] [Related]
38. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Cazorla FM; Duckett SB; Bergström ET; Noreen S; Odijk R; Lugtenberg BJ; Thomas-Oates JE; Bloemberg GV Mol Plant Microbe Interact; 2006 Apr; 19(4):418-28. PubMed ID: 16610745 [TBL] [Abstract][Full Text] [Related]
39. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology. Agrawal A; Rajamani V; Reddy VS; Mukherjee SK; Bhatnagar RK Transgenic Res; 2015 Oct; 24(5):791-801. PubMed ID: 25947089 [TBL] [Abstract][Full Text] [Related]
40. Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway in Pseudomonas protegens. Takeuchi K; Tsuchiya W; Noda N; Suzuki R; Yamazaki T; Haas D Environ Microbiol; 2014 Aug; 16(8):2538-49. PubMed ID: 24428244 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]