These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 23033924)
1. Effect of fixed aqueous layer thickness of polymeric stabilizers on zeta potential and stability of aripiprazole nanosuspensions. Abdelbary AA; Li X; El-Nabarawi M; Elassasy A; Jasti B Pharm Dev Technol; 2013; 18(3):730-5. PubMed ID: 23033924 [TBL] [Abstract][Full Text] [Related]
2. Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. Ain-Ai A; Gupta PK Int J Pharm; 2008 Mar; 351(1-2):282-8. PubMed ID: 18036751 [TBL] [Abstract][Full Text] [Related]
3. Formulation and drying of miconazole and itraconazole nanosuspensions. Cerdeira AM; Mazzotti M; Gander B Int J Pharm; 2013 Feb; 443(1-2):209-20. PubMed ID: 23291552 [TBL] [Abstract][Full Text] [Related]
4. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Verma S; Kumar S; Gokhale R; Burgess DJ Int J Pharm; 2011 Mar; 406(1-2):145-52. PubMed ID: 21185926 [TBL] [Abstract][Full Text] [Related]
5. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions? Bilgili E; Li M; Afolabi A Pharm Dev Technol; 2016; 21(4):499-510. PubMed ID: 25774989 [TBL] [Abstract][Full Text] [Related]
6. Comparison of nanomilling and coprecipitation on the enhancement of in vitro dissolution rate of poorly water-soluble model drug aripiprazole. Abdelbary AA; Li X; El-Nabarawi M; Elassasy A; Jasti B Pharm Dev Technol; 2014 Jun; 19(4):491-500. PubMed ID: 23731085 [TBL] [Abstract][Full Text] [Related]
7. An investigation of the adsorption of hydroxypropylmethyl cellulose 2910 5 mPa s and polyvinylpyrrolidone K90 around Naproxen nanocrystals. Kayaert P; Van den Mooter G J Pharm Sci; 2012 Oct; 101(10):3916-23. PubMed ID: 22829442 [TBL] [Abstract][Full Text] [Related]
8. Development and characterization of an orodispersible film containing drug nanoparticles. Shen BD; Shen CY; Yuan XD; Bai JX; Lv QY; Xu H; Dai L; Yu C; Han J; Yuan HL Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1348-56. PubMed ID: 24103635 [TBL] [Abstract][Full Text] [Related]
9. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Liu P; Rong X; Laru J; van Veen B; Kiesvaara J; Hirvonen J; Laaksonen T; Peltonen L Int J Pharm; 2011 Jun; 411(1-2):215-22. PubMed ID: 21458552 [TBL] [Abstract][Full Text] [Related]
10. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. Xu Y; Liu X; Lian R; Zheng S; Yin Z; Lu Y; Wu W Int J Pharm; 2012 Nov; 438(1-2):287-95. PubMed ID: 22989976 [TBL] [Abstract][Full Text] [Related]
11. Development of orodispersible polymer films containing poorly water soluble active pharmaceutical ingredients with focus on different drug loadings and storage stability. Woertz C; Kleinebudde P Int J Pharm; 2015 Sep; 493(1-2):134-45. PubMed ID: 26216415 [TBL] [Abstract][Full Text] [Related]
12. In vitro release of ketoprofen from hydrophilic matrix tablets containing cellulose polymer mixtures. Vueba ML; Batista de Carvalho LA; Veiga F; Sousa JJ; Pina ME Drug Dev Ind Pharm; 2013 Nov; 39(11):1651-62. PubMed ID: 23094867 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous quantification of polymeric and surface active stabilizers of nanosuspensions by using near-infrared spectroscopy. Cerdeira AM; Werner IA; Mazzotti M; Gander B Drug Dev Ind Pharm; 2012 Nov; 38(11):1360-70. PubMed ID: 22296216 [TBL] [Abstract][Full Text] [Related]
14. Food proteins as novel nanosuspension stabilizers for poorly water-soluble drugs. He W; Lu Y; Qi J; Chen L; Hu F; Wu W Int J Pharm; 2013 Jan; 441(1-2):269-78. PubMed ID: 23194889 [TBL] [Abstract][Full Text] [Related]
15. Enhanced physical stabilization of fenofibrate nanosuspensions via wet co-milling with a superdisintegrant and an adsorbing polymer. Azad M; Afolabi A; Bhakay A; Leonardi J; Davé R; Bilgili E Eur J Pharm Biopharm; 2015 Aug; 94():372-85. PubMed ID: 26079832 [TBL] [Abstract][Full Text] [Related]
16. Study of Rheology and Polymer Adsorption Onto Drug Nanoparticles in Pharmaceutical Suspensions Produced by Nanomilling. Negrini R; Aleandri S; Kuentz M J Pharm Sci; 2017 Nov; 106(11):3395-3401. PubMed ID: 28732711 [TBL] [Abstract][Full Text] [Related]
17. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure. Ferrero C; Massuelle D; Jeannerat D; Doelker E J Control Release; 2008 May; 128(1):71-9. PubMed ID: 18433910 [TBL] [Abstract][Full Text] [Related]
18. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Ghosh I; Bose S; Vippagunta R; Harmon F Int J Pharm; 2011 May; 409(1-2):260-8. PubMed ID: 21371540 [TBL] [Abstract][Full Text] [Related]
19. Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect. Monteiro A; Afolabi A; Bilgili E Drug Dev Ind Pharm; 2013 Feb; 39(2):266-83. PubMed ID: 22503097 [TBL] [Abstract][Full Text] [Related]
20. Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration. Singhal M; Baumgartner A; Turunen E; van Veen B; Hirvonen J; Peltonen L Int J Pharm; 2020 Sep; 587():119636. PubMed ID: 32659405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]