BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

725 related articles for article (PubMed ID: 23033951)

  • 21. Inappropriate activation of androgen receptor by relaxin via beta-catenin pathway.
    Liu S; Vinall RL; Tepper C; Shi XB; Xue LR; Ma AH; Wang LY; Fitzgerald LD; Wu Z; Gandour-Edwards R; deVere White RW; Kung HJ
    Oncogene; 2008 Jan; 27(4):499-505. PubMed ID: 17653089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of protein phosphatase 2A activity alters androgen-independent growth of prostate cancer cells: therapeutic implications.
    Bhardwaj A; Singh S; Srivastava SK; Honkanen RE; Reed E; Singh AP
    Mol Cancer Ther; 2011 May; 10(5):720-31. PubMed ID: 21393425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation.
    Burd CJ; Petre CE; Morey LM; Wang Y; Revelo MP; Haiman CA; Lu S; Fenoglio-Preiser CM; Li J; Knudsen ES; Wong J; Knudsen KE
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2190-5. PubMed ID: 16461912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Androgen receptor promotes the oncogenic function of overexpressed Jagged1 in prostate cancer by enhancing cyclin B1 expression via Akt phosphorylation.
    Yu Y; Zhang Y; Guan W; Huang T; Kang J; Sheng X; Qi J
    Mol Cancer Res; 2014 Jun; 12(6):830-42. PubMed ID: 24574517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of lysine-specific demethylase 1 promotes androgen-independent transition of human prostate cancer LNCaP cells through activation of the AR signaling pathway and suppression of the p53 signaling pathway.
    Li X; Li T; Chen D; Zhang P; Song Y; Zhu H; Xiao Y; Xing Y
    Oncol Rep; 2016 Jan; 35(1):584-92. PubMed ID: 26534764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer.
    Jacob S; Nayak S; Fernandes G; Barai RS; Menon S; Chaudhari UK; Kholkute SD; Sachdeva G
    Endocr Relat Cancer; 2014 Jun; 21(3):473-86. PubMed ID: 24812058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth hormone (GH) receptors in prostate cancer: gene expression in human tissues and cell lines and characterization, GH signaling and androgen receptor regulation in LNCaP cells.
    Weiss-Messer E; Merom O; Adi A; Karry R; Bidosee M; Ber R; Kaploun A; Stein A; Barkey RJ
    Mol Cell Endocrinol; 2004 May; 220(1-2):109-23. PubMed ID: 15196705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells.
    Recchia AG; Musti AM; Lanzino M; Panno ML; Turano E; Zumpano R; Belfiore A; Andò S; Maggiolini M
    Int J Biochem Cell Biol; 2009 Mar; 41(3):603-14. PubMed ID: 18692155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells.
    Choi HY; Lim JE; Hong JH
    Prostate Cancer Prostatic Dis; 2010 Dec; 13(4):343-9. PubMed ID: 20680030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer.
    Terry S; Yang X; Chen MW; Vacherot F; Buttyan R
    J Cell Biochem; 2006 Oct; 99(2):402-10. PubMed ID: 16741972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells.
    Wang H; McKnight NC; Zhang T; Lu ML; Balk SP; Yuan X
    Cancer Res; 2007 Jan; 67(2):528-36. PubMed ID: 17234760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells.
    MacManus CF; Pettigrew J; Seaton A; Wilson C; Maxwell PJ; Berlingeri S; Purcell C; McGurk M; Johnston PG; Waugh DJ
    Mol Cancer Res; 2007 Jul; 5(7):737-48. PubMed ID: 17606477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vav3, a Rho GTPase guanine nucleotide exchange factor, increases during progression to androgen independence in prostate cancer cells and potentiates androgen receptor transcriptional activity.
    Lyons LS; Burnstein KL
    Mol Endocrinol; 2006 May; 20(5):1061-72. PubMed ID: 16384856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Androgen receptor with short polyglutamine tract preferably enhances Wnt/β-catenin-mediated prostatic tumorigenesis.
    He Y; Mi J; Olson A; Aldahl J; Hooker E; Yu EJ; Le V; Lee DH; Kim WK; Robins DM; Geradts J; Sun Z
    Oncogene; 2020 Apr; 39(16):3276-3291. PubMed ID: 32089544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaP.
    Iwasa Y; Mizokami A; Miwa S; Koshida K; Namiki M
    Int J Urol; 2007 Mar; 14(3):233-9. PubMed ID: 17430262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An AKT activity threshold regulates androgen-dependent and androgen-independent PSA expression in prostate cancer cell lines.
    Paliouras M; Diamandis EP
    Biol Chem; 2008 Jun; 389(6):773-80. PubMed ID: 18627304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulator of G-protein signaling 2 (RGS2) inhibits androgen-independent activation of androgen receptor in prostate cancer cells.
    Cao X; Qin J; Xie Y; Khan O; Dowd F; Scofield M; Lin MF; Tu Y
    Oncogene; 2006 Jun; 25(26):3719-34. PubMed ID: 16449965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-androgen 2-hydroxyflutamide modulates cadherin, catenin and androgen receptor phosphorylation in androgen-sensitive LNCaP and androgen-independent PC3 prostate cancer cell lines acting via PI3K/Akt and MAPK/ERK1/2 pathways.
    Górowska-Wójtowicz E; Hejmej A; Kamińska A; Pardyak L; Kotula-Balak M; Dulińska-Litewka J; Laidler P; Bilińska B
    Toxicol In Vitro; 2017 Apr; 40():324-335. PubMed ID: 28163245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PI3K-Akt signaling is involved in the regulation of p21(WAF/CIP) expression and androgen-independent growth in prostate cancer cells.
    Lu S; Ren C; Liu Y; Epner DE
    Int J Oncol; 2006 Jan; 28(1):245-51. PubMed ID: 16328002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer.
    Schiewer MJ; Morey LM; Burd CJ; Liu Y; Merry DE; Ho SM; Knudsen KE
    Oncogene; 2009 Feb; 28(7):1016-27. PubMed ID: 19079343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.