BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 23034222)

  • 1. Microviridin biosynthesis.
    Hemscheidt TK
    Methods Enzymol; 2012; 516():25-35. PubMed ID: 23034222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leader peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic peptide microviridin.
    Weiz AR; Ishida K; Makower K; Ziemert N; Hertweck C; Dittmann E
    Chem Biol; 2011 Nov; 18(11):1413-21. PubMed ID: 22118675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity and scope of MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster.
    Philmus B; Guerrette JP; Hemscheidt TK
    ACS Chem Biol; 2009 Jun; 4(6):429-34. PubMed ID: 19445532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-translational modification in microviridin biosynthesis.
    Philmus B; Christiansen G; Yoshida WY; Hemscheidt TK
    Chembiochem; 2008 Dec; 9(18):3066-73. PubMed ID: 19035375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria.
    Ziemert N; Ishida K; Liaimer A; Hertweck C; Dittmann E
    Angew Chem Int Ed Engl; 2008; 47(40):7756-9. PubMed ID: 18683268
    [No Abstract]   [Full Text] [Related]  

  • 6. Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides.
    Ziemert N; Ishida K; Weiz A; Hertweck C; Dittmann E
    Appl Environ Microbiol; 2010 Jun; 76(11):3568-74. PubMed ID: 20363789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of environmental DNA-derived microviridins provides new insights into the diversity of the tricyclic peptide family.
    Gatte-Picchi D; Weiz A; Ishida K; Hertweck C; Dittmann E
    Appl Environ Microbiol; 2014 Feb; 80(4):1380-7. PubMed ID: 24334668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncovering a Subtype of Microviridins via the Biosynthesis Study of FR901451.
    Wang T; Wang X; Zhao H; Huo L; Fu C
    ACS Chem Biol; 2022 Dec; 17(12):3489-3498. PubMed ID: 36373602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ω-Ester Macrocycles in a New Multicore RiPP Natural Product.
    Zhao G; Kosek D; Liu HB; Ohlemacher SI; Blackburne B; Nikolskaya A; Makarova KS; Sun J; Barry Iii CE; Koonin EV; Dyda F; Bewley CA
    J Am Chem Soc; 2021 Jun; 143(21):8056-8068. PubMed ID: 34028251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Topologically Distinct Modified Peptide with Multiple Bicyclic Core Motifs Expands the Diversity of Microviridin-Like Peptides.
    Roh H; Han Y; Lee H; Kim S
    Chembiochem; 2019 Apr; 20(8):1051-1059. PubMed ID: 30576039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-acetylserine(thiol)lyase from spinach (Spinacia oleracea L.) leaf: cDNA cloning, characterization, and overexpression in Escherichia coli of the chloroplast isoform.
    Rolland N; Droux M; Lebrun M; Douce R
    Arch Biochem Biophys; 1993 Jan; 300(1):213-22. PubMed ID: 8424655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetylmuramate:L-alanine ligase-catalyzed reaction.
    Falk PJ; Ervin KM; Volk KS; Ho HT
    Biochemistry; 1996 Feb; 35(5):1417-22. PubMed ID: 8634271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli.
    Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB
    J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc ion effects on individual Ssp DnaE intein splicing steps: regulating pathway progression.
    Nichols NM; Benner JS; Martin DD; Evans TC
    Biochemistry; 2003 May; 42(18):5301-11. PubMed ID: 12731871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308.
    Aboulmagd E; Oppermann-Sanio FB; Steinbüchel A
    Arch Microbiol; 2000 Nov; 174(5):297-306. PubMed ID: 11131019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization and resistance to hydrogen peroxide of two fructose-1,6-bisphosphatases from Synechococcus PCC 7942.
    Tamoi M; Ishikawa T; Takeda T; Shigeoka S
    Arch Biochem Biophys; 1996 Oct; 334(1):27-36. PubMed ID: 8837735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. YbdK is a carboxylate-amine ligase with a gamma-glutamyl:Cysteine ligase activity: crystal structure and enzymatic assays.
    Lehmann C; Doseeva V; Pullalarevu S; Krajewski W; Howard A; Herzberg O
    Proteins; 2004 Aug; 56(2):376-83. PubMed ID: 15211520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity.
    Galperin MY; Koonin EV
    Protein Sci; 1997 Dec; 6(12):2639-43. PubMed ID: 9416615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and quantification of N alpha-acetylated Y. pestis fusion protein F1-V expressed in Escherichia coli using LCMS E.
    Bariola PA; Russell BA; Monahan SJ; Stroop SD
    J Biotechnol; 2007 May; 130(1):11-23. PubMed ID: 17412441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.