These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 23034389)
1. Calcium-binding protein 39 facilitates molecular interaction between Ste20p proline alanine-rich kinase and oxidative stress response 1 monomers. Ponce-Coria J; Gagnon KB; Delpire E Am J Physiol Cell Physiol; 2012 Dec; 303(11):C1198-205. PubMed ID: 23034389 [TBL] [Abstract][Full Text] [Related]
2. A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters. Ponce-Coria J; Markadieu N; Austin TM; Flammang L; Rios K; Welling PA; Delpire E J Biol Chem; 2014 Jun; 289(25):17680-8. PubMed ID: 24811174 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the interaction of the stress kinase SPAK with the Na+-K+-2Cl- cotransporter in the nervous system: evidence for a scaffolding role of the kinase. Piechotta K; Garbarini N; England R; Delpire E J Biol Chem; 2003 Dec; 278(52):52848-56. PubMed ID: 14563843 [TBL] [Abstract][Full Text] [Related]
4. A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter. Gagnon KB; England R; Delpire E Cell Physiol Biochem; 2007; 20(1-4):131-42. PubMed ID: 17595523 [TBL] [Abstract][Full Text] [Related]
5. Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter. Gagnon KB; England R; Delpire E Mol Cell Biol; 2006 Jan; 26(2):689-98. PubMed ID: 16382158 [TBL] [Abstract][Full Text] [Related]
6. On the substrate recognition and negative regulation of SPAK, a kinase modulating Na+-K+-2Cl- cotransport activity. Gagnon KB; Delpire E Am J Physiol Cell Physiol; 2010 Sep; 299(3):C614-20. PubMed ID: 20463172 [TBL] [Abstract][Full Text] [Related]
7. Volume sensitivity of cation-Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. Gagnon KB; England R; Delpire E Am J Physiol Cell Physiol; 2006 Jan; 290(1):C134-42. PubMed ID: 15930150 [TBL] [Abstract][Full Text] [Related]
8. Multiple pathways for protein phosphatase 1 (PP1) regulation of Na-K-2Cl cotransporter (NKCC1) function: the N-terminal tail of the Na-K-2Cl cotransporter serves as a regulatory scaffold for Ste20-related proline/alanine-rich kinase (SPAK) AND PP1. Gagnon KB; Delpire E J Biol Chem; 2010 May; 285(19):14115-21. PubMed ID: 20223824 [TBL] [Abstract][Full Text] [Related]
9. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Vitari AC; Thastrup J; Rafiqi FH; Deak M; Morrice NA; Karlsson HK; Alessi DR Biochem J; 2006 Jul; 397(1):223-31. PubMed ID: 16669787 [TBL] [Abstract][Full Text] [Related]
10. SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Thastrup JO; Rafiqi FH; Vitari AC; Pozo-Guisado E; Deak M; Mehellou Y; Alessi DR Biochem J; 2012 Jan; 441(1):325-37. PubMed ID: 22032326 [TBL] [Abstract][Full Text] [Related]
11. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). Piechotta K; Lu J; Delpire E J Biol Chem; 2002 Dec; 277(52):50812-9. PubMed ID: 12386165 [TBL] [Abstract][Full Text] [Related]
12. Functional insights into the activation mechanism of Ste20-related kinases. Gagnon KB; Rios K; Delpire E Cell Physiol Biochem; 2011; 28(6):1219-30. PubMed ID: 22179010 [TBL] [Abstract][Full Text] [Related]
13. Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. Gagnon KB; England R; Diehl L; Delpire E Am J Physiol Cell Physiol; 2007 May; 292(5):C1809-15. PubMed ID: 17267545 [TBL] [Abstract][Full Text] [Related]
14. PASK (proline-alanine-rich STE20-related kinase), a regulatory kinase of the Na-K-Cl cotransporter (NKCC1). Dowd BF; Forbush B J Biol Chem; 2003 Jul; 278(30):27347-53. PubMed ID: 12740379 [TBL] [Abstract][Full Text] [Related]
15. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. Grimm PR; Taneja TK; Liu J; Coleman R; Chen YY; Delpire E; Wade JB; Welling PA J Biol Chem; 2012 Nov; 287(45):37673-90. PubMed ID: 22977235 [TBL] [Abstract][Full Text] [Related]
16. Domain-Swapping Switch Point in Ste20 Protein Kinase SPAK. Taylor CA; Juang YC; Earnest S; Sengupta S; Goldsmith EJ; Cobb MH Biochemistry; 2015 Aug; 54(32):5063-71. PubMed ID: 26208601 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of domain-swapped STE20 OSR1 kinase domain. Lee SJ; Cobb MH; Goldsmith EJ Protein Sci; 2009 Feb; 18(2):304-13. PubMed ID: 19177573 [TBL] [Abstract][Full Text] [Related]
18. PKCdelta acts upstream of SPAK in the activation of NKCC1 by hyperosmotic stress in human airway epithelial cells. Smith L; Smallwood N; Altman A; Liedtke CM J Biol Chem; 2008 Aug; 283(32):22147-56. PubMed ID: 18550547 [TBL] [Abstract][Full Text] [Related]
19. Regulation of NKCC2 activity by inhibitory SPAK isoforms: KS-SPAK is a more potent inhibitor than SPAK2. Park HJ; Curry JN; McCormick JA Am J Physiol Renal Physiol; 2013 Dec; 305(12):F1687-96. PubMed ID: 24133122 [TBL] [Abstract][Full Text] [Related]
20. Impaired phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Lin SH; Yu IS; Jiang ST; Lin SW; Chu P; Chen A; Sytwu HK; Sohara E; Uchida S; Sasaki S; Yang SS Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17538-43. PubMed ID: 21972418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]