These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures. Moriuchi T; Hirao T Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular Chirality in Metal-Organic Complexes. Dong J; Liu Y; Cui Y Acc Chem Res; 2021 Jan; 54(1):194-206. PubMed ID: 33337867 [TBL] [Abstract][Full Text] [Related]
6. Chirality induction in supramolecular aggregate: chiral recognition between armed cyclen-Na+ complexes having quadruplicated helical geometry. Nishimura T; Shinoda S; Tsukube H Chirality; 2002 Jul; 14(7):555-7. PubMed ID: 12112327 [TBL] [Abstract][Full Text] [Related]
7. Metal-organic frameworks with functional pores for recognition of small molecules. Chen B; Xiang S; Qian G Acc Chem Res; 2010 Aug; 43(8):1115-24. PubMed ID: 20450174 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Wasielewski MR Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479 [TBL] [Abstract][Full Text] [Related]
9. Chirality transfer in propeller-shaped cyclen-calcium(II) complexes: metal-coordinating and ion-pairing anion procedures. Ito H; Tsukube H; Shinoda S Chemistry; 2013 Mar; 19(10):3330-9. PubMed ID: 23404763 [TBL] [Abstract][Full Text] [Related]
10. Chiral metallocycles: rational synthesis and novel applications. Lee SJ; Lin W Acc Chem Res; 2008 Apr; 41(4):521-37. PubMed ID: 18271561 [TBL] [Abstract][Full Text] [Related]
11. Chirality induction by formation of assembled structures based on anion-responsive π-conjugated molecules. Maeda H; Hane W; Bando Y; Terashima Y; Haketa Y; Shibaguchi H; Kawai T; Naito M; Takaishi K; Uchiyama M; Muranaka A Chemistry; 2013 Nov; 19(48):16263-71. PubMed ID: 24150915 [TBL] [Abstract][Full Text] [Related]
12. Supramolecular chirality of self-assembled systems in solution. Mateos-Timoneda MA; Crego-Calama M; Reinhoudt DN Chem Soc Rev; 2004 Jul; 33(6):363-72. PubMed ID: 15280969 [TBL] [Abstract][Full Text] [Related]
13. Supramolecular networking of macrocycles based on exo-coordination: from discrete to continuous frameworks. Park S; Lee SY; Park KM; Lee SS Acc Chem Res; 2012 Mar; 45(3):391-403. PubMed ID: 21967328 [TBL] [Abstract][Full Text] [Related]
14. Enantioselective guest binding and dynamic resolution of cationic ruthenium complexes by a chiral metal-ligand assembly. Fiedler D; Leung DH; Bergman RG; Raymond KN J Am Chem Soc; 2004 Mar; 126(12):3674-5. PubMed ID: 15038695 [TBL] [Abstract][Full Text] [Related]
15. The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: an overview. Gottarelli G; Lena S; Masiero S; Pieraccini S; Spada GP Chirality; 2008 Mar; 20(3-4):471-85. PubMed ID: 17918751 [TBL] [Abstract][Full Text] [Related]
16. Self-assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures. Kamikawa Y; Nishii M; Kato T Chemistry; 2004 Nov; 10(23):5942-51. PubMed ID: 15532055 [TBL] [Abstract][Full Text] [Related]
17. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. Kim HJ; Kim T; Lee M Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602 [TBL] [Abstract][Full Text] [Related]