These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23034731)

  • 1. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints.
    Ouyang X; Zhou S; Su CT; Ge Z; Li R; Kwoh CK
    J Comput Chem; 2013 Feb; 34(4):326-36. PubMed ID: 23034731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CovalentDock Cloud: a web server for automated covalent docking.
    Ouyang X; Zhou S; Ge Z; Li R; Kwoh CK
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W329-32. PubMed ID: 23677616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening.
    Rastelli G; Degliesposti G; Del Rio A; Sgobba M
    Chem Biol Drug Des; 2009 Mar; 73(3):283-6. PubMed ID: 19207463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Docking-based virtual screening of covalently binding ligands: an orthogonal lead discovery approach.
    Schröder J; Klinger A; Oellien F; Marhöfer RJ; Duszenko M; Selzer PM
    J Med Chem; 2013 Feb; 56(4):1478-90. PubMed ID: 23350811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive docking study on the selectivity of binding of aromatic compounds to proteins.
    Hetényi C; Maran U; Karelson M
    J Chem Inf Comput Sci; 2003; 43(5):1576-83. PubMed ID: 14502492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a computational docking methodology to identify the non-covalent binding site of ligands to DNA.
    Deligkaris C; Ascone AT; Sweeney KJ; Greene AJ
    Mol Biosyst; 2014 Aug; 10(8):2106-25. PubMed ID: 24853173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The consequences of scoring docked ligand conformations using free energy correlations.
    Spyrakis F; Amadasi A; Fornabaio M; Abraham DJ; Mozzarelli A; Kellogg GE; Cozzini P
    Eur J Med Chem; 2007 Jul; 42(7):921-33. PubMed ID: 17346861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Evaluation of Covalent Docking Tools.
    Scarpino A; Ferenczy GG; Keserű GM
    J Chem Inf Model; 2018 Jul; 58(7):1441-1458. PubMed ID: 29890081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking covalent inhibitors: a parameter free approach to pose prediction and scoring.
    Zhu K; Borrelli KW; Greenwood JR; Day T; Abel R; Farid RS; Harder E
    J Chem Inf Model; 2014 Jul; 54(7):1932-40. PubMed ID: 24916536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of experimental design to optimize docking performance: the case of LiGenDock, the docking module of LiGen, a new de novo design program.
    Beato C; Beccari AR; Cavazzoni C; Lorenzi S; Costantino G
    J Chem Inf Model; 2013 Jun; 53(6):1503-17. PubMed ID: 23590204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware.
    Joy S; Nair PS; Hariharan R; Pillai MR
    In Silico Biol; 2006; 6(6):601-5. PubMed ID: 17518767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E; Walters WP; Charifson PS
    Proteins; 2004 Aug; 56(2):235-49. PubMed ID: 15211508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence.
    Namasivayam V; Günther R
    Chem Biol Drug Des; 2007 Dec; 70(6):475-84. PubMed ID: 17986206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent docking using autodock: Two-point attractor and flexible side chain methods.
    Bianco G; Forli S; Goodsell DS; Olson AJ
    Protein Sci; 2016 Jan; 25(1):295-301. PubMed ID: 26103917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical assessment of the automated AutoDock as a new docking tool for virtual screening.
    Park H; Lee J; Lee S
    Proteins; 2006 Nov; 65(3):549-54. PubMed ID: 16988956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.
    Estrada T; Zhang B; Cicotti P; Armen RS; Taufer M
    Comput Biol Med; 2012 Jul; 42(7):758-71. PubMed ID: 22658682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LigDockCSA: protein-ligand docking using conformational space annealing.
    Shin WH; Heo L; Lee J; Ko J; Seok C; Lee J
    J Comput Chem; 2011 Nov; 32(15):3226-32. PubMed ID: 21837636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ParaDockS: a framework for molecular docking with population-based metaheuristics.
    Meier R; Pippel M; Brandt F; Sippl W; Baldauf C
    J Chem Inf Model; 2010 May; 50(5):879-89. PubMed ID: 20415499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.