These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23034737)

  • 1. The effect of oxygen vacancies on the binding interactions of NH3 with rutile TiO2(110)-1 × 1.
    Kim B; Li Z; Kay BD; Dohnálek Z; Kim YK
    Phys Chem Chem Phys; 2012 Nov; 14(43):15060-5. PubMed ID: 23034737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of ammonia on stoichiometric and reduced TiO(2)(001) single crystal surfaces.
    Wilson JN; Idriss H
    Langmuir; 2004 Dec; 20(25):10956-61. PubMed ID: 15568846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physisorption of N2, O2, and CO on fully oxidized TiO2(110).
    Dohnálek Z; Kim J; Bondarchuk O; White JM; Kay BD
    J Phys Chem B; 2006 Mar; 110(12):6229-35. PubMed ID: 16553438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption energies, inter-adsorbate interactions, and the two binding sites within monolayer benzene on Ag(111).
    Rockey TJ; Yang M; Dai HL
    J Phys Chem B; 2006 Oct; 110(40):19973-8. PubMed ID: 17020384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and dissociation of NH3 on clean and hydroxylated TiO2 rutile (110) surfaces: a computational study.
    Chang JG; Chen HT; Ju SP; Chang CS; Weng MH
    J Comput Chem; 2011 Apr; 32(6):1101-12. PubMed ID: 21387336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT study of coverage-depended adsorption of NH3 on TiO2-B (100) surface.
    Guo XJ; Liu W; Fang W; Cai L; Zhu Y; Lu L; Lu X
    Phys Chem Chem Phys; 2012 Dec; 14(48):16618-25. PubMed ID: 22955312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions.
    Hahn KR; Tricoli A; Santarossa G; Vargas A; Baiker A
    Langmuir; 2012 Jan; 28(2):1646-56. PubMed ID: 22149350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation.
    Sedona F; Rizzi GA; Agnoli S; Llabrés i Xamena FX; Papageorgiou A; Ostermann D; Sambi M; Finetti P; Schierbaum K; Granozzi G
    J Phys Chem B; 2005 Dec; 109(51):24411-26. PubMed ID: 16375442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study on the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces.
    Huang WF; Raghunath P; Lin MC
    J Comput Chem; 2011 Apr; 32(6):1065-81. PubMed ID: 21387334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio studies of hydrogen and acceptor defects in rutile TiO(2).
    Bjørheim TS; Stølen S; Norby T
    Phys Chem Chem Phys; 2010 Jul; 12(25):6817-25. PubMed ID: 20454724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol photo-oxidation on a rutile TiO2(110) single crystal surface.
    Nadeem AM; Muir JM; Connelly KA; Adamson BT; Metson BJ; Idriss H
    Phys Chem Chem Phys; 2011 May; 13(17):7637-43. PubMed ID: 21225073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces.
    Lira E; Wendt S; Huo P; Hansen JØ; Streber R; Porsgaard S; Wei Y; Bechstein R; Lægsgaard E; Besenbacher F
    J Am Chem Soc; 2011 May; 133(17):6529-32. PubMed ID: 21480608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetone reactions over the surfaces of polycrystalline UO2: a kinetic and spectroscopic study.
    King R; Idriss H
    Langmuir; 2009 Apr; 25(8):4543-55. PubMed ID: 19366223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-dependent electron-stimulated reactions in water films on TiO2(110).
    Lane CD; Petrik NG; Orlando TM; Kimmel GA
    J Chem Phys; 2007 Dec; 127(22):224706. PubMed ID: 18081413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of new TPD analysis techniques in the evaluation of second order desorption kinetics of cyanogen from Cu(001).
    Ciftlikli EZ; Lee EY; Lallo J; Rangan S; Senanayake SD; Hinch BJ
    Langmuir; 2010 Dec; 26(24):18742-9. PubMed ID: 21090656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of water with ordered theta-Al(2)O(3) ultrathin films grown on NiAl(100).
    Ozensoy E; Szanyi J; Peden CH
    J Phys Chem B; 2005 Mar; 109(8):3431-6. PubMed ID: 16851375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen reactivity on highly-hydroxylated TiO2(110) surfaces prepared via carboxylic acid adsorption and photolysis.
    Du Y; Petrik NG; Deskins NA; Wang Z; Henderson MA; Kimmel GA; Lyubinetsky I
    Phys Chem Chem Phys; 2012 Mar; 14(9):3066-74. PubMed ID: 22108618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.