BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23034929)

  • 1. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique.
    Lahiri B; Holland G; Centrone A
    Small; 2013 Feb; 9(3):439-45. PubMed ID: 23034929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Chemical Analysis at the Nanoscale Using the Photothermal Induced Resonance Technique.
    Ramer G; Aksyuk VA; Centrone A
    Anal Chem; 2017 Dec; 89(24):13524-13531. PubMed ID: 29165992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution.
    Katzenmeyer AM; Holland G; Kjoller K; Centrone A
    Anal Chem; 2015 Mar; 87(6):3154-9. PubMed ID: 25707296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap-Plasmon-Enhanced High-Spatial-Resolution Imaging by Photothermal-Induced Resonance in the Visible Range.
    Zhou J; Smirnov A; Dietler G; Sekatskii SK
    Nano Lett; 2019 Nov; 19(11):8278-8286. PubMed ID: 31650844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of Resonance Tracking for Assuring Reliability in Resonance Enhanced Photothermal Infrared Spectroscopy and Imaging.
    Ramer G; Reisenbauer F; Steindl B; Tomischko W; Lendl B
    Appl Spectrosc; 2017 Aug; 71(8):2013-2020. PubMed ID: 28756704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes.
    Jakobi J; Menéndez-Manjón A; Chakravadhanula VS; Kienle L; Wagener P; Barcikowski S
    Nanotechnology; 2011 Apr; 22(14):145601. PubMed ID: 21346297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging.
    Kennedy E; Al-Majmaie R; Al-Rubeai M; Zerulla D; Rice JH
    J Biophotonics; 2015 Jan; 8(1-2):133-41. PubMed ID: 24307406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution.
    Jakob DS; Centrone A
    Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the Surface-Enhanced IR Absorption Effect in the Photothermally Induced Resonance AFM-IR Technique toward Nanoscale Chemical Analysis.
    Wang CT; Jiang B; Zhou YW; Jiang TW; Liu JH; Zhu GD; Cai WB
    Anal Chem; 2019 Aug; 91(16):10541-10548. PubMed ID: 31313574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding and Controlling Spatial Resolution, Sensitivity, and Surface Selectivity in Resonant-Mode Photothermal-Induced Resonance Spectroscopy.
    Quaroni L
    Anal Chem; 2020 Mar; 92(5):3544-3554. PubMed ID: 32023046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals.
    Harrison AJ; Bilgili EA; Beaudoin SP; Taylor LS
    Anal Chem; 2013 Dec; 85(23):11449-55. PubMed ID: 24171582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot.
    Ma X; Pavlidis G; Dillon E; Beltran V; Schwartz JJ; Thoury M; Borondics F; Sandt C; Kjoller K; Berrie BH; Centrone A
    Anal Chem; 2022 Feb; 94(7):3103-3110. PubMed ID: 35138807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique.
    Katzenmeyer AM; Canivet J; Holland G; Farrusseng D; Centrone A
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2852-6. PubMed ID: 24615798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique.
    Lahiri B; Holland G; Aksyuk V; Centrone A
    Nano Lett; 2013 Jul; 13(7):3218-24. PubMed ID: 23777547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ATR-FTIR and O-PTIR Imaging Techniques for the Characterisation of Zinc-Type Degradation Products in a Paint Cross-Section.
    Chua L; Banas A; Banas K
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Analysis of Historical Paintings by Means of O-PTIR Spectroscopy: The Identification of the Organic Particles in L'Arlésienne (Portrait of Madame Ginoux) by Van Gogh.
    Beltran V; Marchetti A; Nuyts G; Leeuwestein M; Sandt C; Borondics F; De Wael K
    Angew Chem Int Ed Engl; 2021 Oct; 60(42):22753-22760. PubMed ID: 34165241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.