These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 23034929)
1. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Lahiri B; Holland G; Centrone A Small; 2013 Feb; 9(3):439-45. PubMed ID: 23034929 [TBL] [Abstract][Full Text] [Related]
2. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique. Katzenmeyer AM; Aksyuk V; Centrone A Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Chemical Analysis at the Nanoscale Using the Photothermal Induced Resonance Technique. Ramer G; Aksyuk VA; Centrone A Anal Chem; 2017 Dec; 89(24):13524-13531. PubMed ID: 29165992 [TBL] [Abstract][Full Text] [Related]
4. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit. Centrone A Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952 [TBL] [Abstract][Full Text] [Related]
5. Understanding AFM-IR Signal Dependence on Sample Thickness and Laser Excitation: Experimental and Theoretical Insights. Jakob DS; Schwartz JJ; Pavlidis G; Grutter KE; Centrone A Anal Chem; 2024 Oct; 96(41):16195-16202. PubMed ID: 39365177 [TBL] [Abstract][Full Text] [Related]
6. Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Katzenmeyer AM; Holland G; Kjoller K; Centrone A Anal Chem; 2015 Mar; 87(6):3154-9. PubMed ID: 25707296 [TBL] [Abstract][Full Text] [Related]
7. Gap-Plasmon-Enhanced High-Spatial-Resolution Imaging by Photothermal-Induced Resonance in the Visible Range. Zhou J; Smirnov A; Dietler G; Sekatskii SK Nano Lett; 2019 Nov; 19(11):8278-8286. PubMed ID: 31650844 [TBL] [Abstract][Full Text] [Related]
8. Implementation of Resonance Tracking for Assuring Reliability in Resonance Enhanced Photothermal Infrared Spectroscopy and Imaging. Ramer G; Reisenbauer F; Steindl B; Tomischko W; Lendl B Appl Spectrosc; 2017 Aug; 71(8):2013-2020. PubMed ID: 28756704 [TBL] [Abstract][Full Text] [Related]
9. Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes. Jakobi J; Menéndez-Manjón A; Chakravadhanula VS; Kienle L; Wagener P; Barcikowski S Nanotechnology; 2011 Apr; 22(14):145601. PubMed ID: 21346297 [TBL] [Abstract][Full Text] [Related]
10. Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging. Kennedy E; Al-Majmaie R; Al-Rubeai M; Zerulla D; Rice JH J Biophotonics; 2015 Jan; 8(1-2):133-41. PubMed ID: 24307406 [TBL] [Abstract][Full Text] [Related]
11. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution. Jakob DS; Centrone A Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942 [TBL] [Abstract][Full Text] [Related]
12. Exploiting the Surface-Enhanced IR Absorption Effect in the Photothermally Induced Resonance AFM-IR Technique toward Nanoscale Chemical Analysis. Wang CT; Jiang B; Zhou YW; Jiang TW; Liu JH; Zhu GD; Cai WB Anal Chem; 2019 Aug; 91(16):10541-10548. PubMed ID: 31313574 [TBL] [Abstract][Full Text] [Related]
13. Understanding and Controlling Spatial Resolution, Sensitivity, and Surface Selectivity in Resonant-Mode Photothermal-Induced Resonance Spectroscopy. Quaroni L Anal Chem; 2020 Mar; 92(5):3544-3554. PubMed ID: 32023046 [TBL] [Abstract][Full Text] [Related]
14. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals. Harrison AJ; Bilgili EA; Beaudoin SP; Taylor LS Anal Chem; 2013 Dec; 85(23):11449-55. PubMed ID: 24171582 [TBL] [Abstract][Full Text] [Related]
15. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy. Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133 [TBL] [Abstract][Full Text] [Related]
16. Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot. Ma X; Pavlidis G; Dillon E; Beltran V; Schwartz JJ; Thoury M; Borondics F; Sandt C; Kjoller K; Berrie BH; Centrone A Anal Chem; 2022 Feb; 94(7):3103-3110. PubMed ID: 35138807 [TBL] [Abstract][Full Text] [Related]
17. Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique. Katzenmeyer AM; Canivet J; Holland G; Farrusseng D; Centrone A Angew Chem Int Ed Engl; 2014 Mar; 53(11):2852-6. PubMed ID: 24615798 [TBL] [Abstract][Full Text] [Related]
18. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Lahiri B; Holland G; Aksyuk V; Centrone A Nano Lett; 2013 Jul; 13(7):3218-24. PubMed ID: 23777547 [TBL] [Abstract][Full Text] [Related]
19. Comparison of ATR-FTIR and O-PTIR Imaging Techniques for the Characterisation of Zinc-Type Degradation Products in a Paint Cross-Section. Chua L; Banas A; Banas K Molecules; 2022 Sep; 27(19):. PubMed ID: 36234838 [TBL] [Abstract][Full Text] [Related]
20. High-resolution noncontact atomic force microscopy. Pérez R; García R; Schwarz U Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]