These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 23034954)
1. Limbic system structures differentially contribute to exploratory trip organization of the rat. Winter SS; Köppen JR; Ebert TB; Wallace DG Hippocampus; 2013 Feb; 23(2):139-52. PubMed ID: 23034954 [TBL] [Abstract][Full Text] [Related]
2. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning. Martin MM; Horn KL; Kusman KJ; Wallace DG Physiol Behav; 2007 Feb; 90(2-3):412-24. PubMed ID: 17126862 [TBL] [Abstract][Full Text] [Related]
3. The medial frontal cortex contributes to but does not organize rat exploratory behavior. Blankenship PA; Stuebing SL; Winter SS; Cheatwood JL; Benson JD; Whishaw IQ; Wallace DG Neuroscience; 2016 Nov; 336():1-11. PubMed ID: 27590266 [TBL] [Abstract][Full Text] [Related]
4. Mammillothalamic tract lesions disrupt dead reckoning in the rat. Winter SS; Wagner SJ; McMillin JL; Wallace DG Eur J Neurosci; 2011 Jan; 33(2):371-81. PubMed ID: 21138488 [TBL] [Abstract][Full Text] [Related]
5. Selective hippocampal cholinergic deafferentation impairs self-movement cue use during a food hoarding task. Martin MM; Wallace DG Behav Brain Res; 2007 Oct; 183(1):78-86. PubMed ID: 17610963 [TBL] [Abstract][Full Text] [Related]
6. Movement characteristics support a role for dead reckoning in organizing exploratory behavior. Wallace DG; Hamilton DA; Whishaw IQ Anim Cogn; 2006 Jul; 9(3):219-28. PubMed ID: 16767471 [TBL] [Abstract][Full Text] [Related]
7. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Hines DJ; Whishaw IQ Eur J Neurosci; 2005 Nov; 22(9):2363-75. PubMed ID: 16262675 [TBL] [Abstract][Full Text] [Related]
8. Hippocampectomized rats are impaired in homing by path integration. Maaswinkel H; Jarrard LE; Whishaw IQ Hippocampus; 1999; 9(5):553-61. PubMed ID: 10560926 [TBL] [Abstract][Full Text] [Related]
9. Navigating with fingers and feet: analysis of human (Homo sapiens) and rat (Rattus norvegicus) movement organization during nonvisual spatial tasks. Wallace DG; Köppen JR; Jones JL; Winter SS; Wagner SJ J Comp Psychol; 2010 Nov; 124(4):381-94. PubMed ID: 20836594 [TBL] [Abstract][Full Text] [Related]
10. Organization of exploratory behavior under dark conditions in female and male rats. Osterlund Oltmanns JR; Lipton MH; Adamczyk N; Lake RI; Blackwell AA; Schaeffer EA; Tsai SY; Kartje GL; Wallace DG Behav Processes; 2021 Aug; 189():104437. PubMed ID: 34089779 [TBL] [Abstract][Full Text] [Related]
11. Rats with hippocampal lesion show impaired learning and memory in the ziggurat task: a new task to evaluate spatial behavior. Faraji J; Lehmann H; Metz GA; Sutherland RJ Behav Brain Res; 2008 May; 189(1):17-31. PubMed ID: 18192033 [TBL] [Abstract][Full Text] [Related]
12. Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests. Whishaw IQ; Hines DJ; Wallace DG Behav Brain Res; 2001 Dec; 127(1-2):49-69. PubMed ID: 11718884 [TBL] [Abstract][Full Text] [Related]
13. Nicotinic receptor activation in perirhinal cortex and hippocampus enhances object memory in rats. Melichercik AM; Elliott KS; Bianchi C; Ernst SM; Winters BD Neuropharmacology; 2012 Apr; 62(5-6):2096-105. PubMed ID: 22280876 [TBL] [Abstract][Full Text] [Related]
14. Progression and stop organization reveals conservation of movement organization during dark exploration across rats and mice. Donaldson TN; Jennings KT; Cherep LA; Blankenship PA; Blackwell AA; Yoder RM; Wallace DG Behav Processes; 2019 May; 162():29-38. PubMed ID: 30684732 [TBL] [Abstract][Full Text] [Related]
15. A video demonstration of preserved piloting by scent tracking but impaired dead reckoning after fimbria-fornix lesions in the rat. Whishaw IQ; Gorny BP J Vis Exp; 2009 Apr; (26):. PubMed ID: 19398947 [TBL] [Abstract][Full Text] [Related]
16. Calibrating space: exploration is important for allothetic and idiothetic navigation. Whishaw IQ; Brooks BL Hippocampus; 1999; 9(6):659-67. PubMed ID: 10641759 [TBL] [Abstract][Full Text] [Related]
17. Fimbria-fornix lesions disrupt the dead reckoning (homing) component of exploratory behavior in mice. Gorny JH; Gorny B; Wallace DG; Whishaw IQ Learn Mem; 2002; 9(6):387-94. PubMed ID: 12464698 [TBL] [Abstract][Full Text] [Related]
18. The orienting-exploratory response hypothesis of discriminative conditioning. Grastyán E; Buzsáki G Acta Neurobiol Exp (Wars); 1979; 39(6):491-501. PubMed ID: 547706 [TBL] [Abstract][Full Text] [Related]
20. The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hunsaker MR; Rosenberg JS; Kesner RP Hippocampus; 2008; 18(10):1064-73. PubMed ID: 18651615 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]