These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 23035259)
1. New insights into lysosomal dysfunction in Parkinson’s disease: an emerging role for ATP13A2. Rochet JC Mov Disord; 2012 Aug; 27(9):1092. PubMed ID: 23035259 [No Abstract] [Full Text] [Related]
2. Lysosomal defects in ATP13A2 and GBA associated familial Parkinson's disease. Sato S; Li Y; Hattori N J Neural Transm (Vienna); 2017 Nov; 124(11):1395-1400. PubMed ID: 28894968 [TBL] [Abstract][Full Text] [Related]
3. The role of ATP13A2 in Parkinson's disease: Clinical phenotypes and molecular mechanisms. Park JS; Blair NF; Sue CM Mov Disord; 2015 May; 30(6):770-9. PubMed ID: 25900096 [TBL] [Abstract][Full Text] [Related]
4. Atp13a2 Deficiency Aggravates Astrocyte-Mediated Neuroinflammation via NLRP3 Inflammasome Activation. Qiao C; Yin N; Gu HY; Zhu JL; Ding JH; Lu M; Hu G CNS Neurosci Ther; 2016 Jun; 22(6):451-60. PubMed ID: 26848562 [TBL] [Abstract][Full Text] [Related]
5. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Kong SM; Chan BK; Park JS; Hill KJ; Aitken JB; Cottle L; Farghaian H; Cole AR; Lay PA; Sue CM; Cooper AA Hum Mol Genet; 2014 Jun; 23(11):2816-33. PubMed ID: 24603074 [TBL] [Abstract][Full Text] [Related]
6. The strategic function of the P5-ATPase ATP13A2 in toxic waste disposal. de Tezanos Pinto F; Adamo HP Neurochem Int; 2018 Jan; 112():108-113. PubMed ID: 29169913 [TBL] [Abstract][Full Text] [Related]
7. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. Kett LR; Stiller B; Bernath MM; Tasset I; Blesa J; Jackson-Lewis V; Chan RB; Zhou B; Di Paolo G; Przedborski S; Cuervo AM; Dauer WT J Neurosci; 2015 Apr; 35(14):5724-42. PubMed ID: 25855184 [TBL] [Abstract][Full Text] [Related]
8. A lipid switch unlocks Parkinson's disease-associated ATP13A2. Holemans T; Sørensen DM; van Veen S; Martin S; Hermans D; Kemmer GC; Van den Haute C; Baekelandt V; Günther Pomorski T; Agostinis P; Wuytack F; Palmgren M; Eggermont J; Vangheluwe P Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9040-5. PubMed ID: 26134396 [TBL] [Abstract][Full Text] [Related]
9. The zebrafish homologue of Parkinson's disease ATP13A2 is essential for embryonic survival. Lopes da Fonseca T; Correia A; Hasselaar W; van der Linde HC; Willemsen R; Outeiro TF Brain Res Bull; 2013 Jan; 90():118-26. PubMed ID: 23123961 [TBL] [Abstract][Full Text] [Related]
10. Hereditary Parkinsonism-Associated Genetic Variations in PARK9 Locus Lead to Functional Impairment of ATPase Type 13A2. Park JS; Sue CM Curr Protein Pept Sci; 2017; 18(7):725-732. PubMed ID: 26965689 [TBL] [Abstract][Full Text] [Related]
12. Advances in GBA-associated Parkinson's disease--Pathology, presentation and therapies. Barkhuizen M; Anderson DG; Grobler AF Neurochem Int; 2016 Feb; 93():6-25. PubMed ID: 26743617 [TBL] [Abstract][Full Text] [Related]
13. Lysosomal trafficking defects link Parkinson's disease with Gaucher's disease. Wong YC; Krainc D Mov Disord; 2016 Nov; 31(11):1610-1618. PubMed ID: 27619775 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia regulation of ATP13A2 (PARK9) gene transcription. Xu Q; Guo H; Zhang X; Tang B; Cai F; Zhou W; Song W J Neurochem; 2012 Jul; 122(2):251-9. PubMed ID: 22288903 [TBL] [Abstract][Full Text] [Related]
15. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9). Daniel G; Musso A; Tsika E; Fiser A; Glauser L; Pletnikova O; Schneider BL; Moore DJ Neurobiol Dis; 2015 Jan; 73():229-43. PubMed ID: 25461191 [TBL] [Abstract][Full Text] [Related]
16. Impulse control disorder, lysosomal malfunction and ATP13A2 insufficiency in Parkinsonism. Liu JP; Li J; Lu Y; Wang L; Chen G Clin Exp Pharmacol Physiol; 2017 Feb; 44(2):172-179. PubMed ID: 27997702 [TBL] [Abstract][Full Text] [Related]
17. Parkinson's disease-associated human P5B-ATPase ATP13A2 increases spermidine uptake. De La Hera DP; Corradi GR; Adamo HP; De Tezanos Pinto F Biochem J; 2013 Feb; 450(1):47-53. PubMed ID: 23205587 [TBL] [Abstract][Full Text] [Related]
18. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Henry AG; Aghamohammadzadeh S; Samaroo H; Chen Y; Mou K; Needle E; Hirst WD Hum Mol Genet; 2015 Nov; 24(21):6013-28. PubMed ID: 26251043 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis of GIGYF2, ATP13A2 and GBA genes in Brazilian patients with early-onset Parkinson's disease. Dos Santos AV; Pestana CP; Diniz KR; Campos M; Abdalla-Carvalho CB; de Rosso AL; Pereira JS; Nicaretta DH; de Carvalho WL; Dos Santos JM; Santos-Rebouças CB; Pimentel MM Neurosci Lett; 2010 Nov; 485(2):121-4. PubMed ID: 20816920 [TBL] [Abstract][Full Text] [Related]
20. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Estrada-Cuzcano A; Martin S; Chamova T; Synofzik M; Timmann D; Holemans T; Andreeva A; Reichbauer J; De Rycke R; Chang DI; van Veen S; Samuel J; Schöls L; Pöppel T; Mollerup Sørensen D; Asselbergh B; Klein C; Zuchner S; Jordanova A; Vangheluwe P; Tournev I; Schüle R Brain; 2017 Feb; 140(2):287-305. PubMed ID: 28137957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]