These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23035526)

  • 1. [Investigation of exciting light and plant leaves age effects on chlorophyll fluorescense of radish plants].
    Nesterenko TV; Tikhomirov AA; Shikhov VN
    Biofizika; 2012; 57(4):614-20. PubMed ID: 23035526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of blue light on leaf mesophyll conductance.
    Loreto F; Tsonev T; Centritto M
    J Exp Bot; 2009; 60(8):2283-90. PubMed ID: 19395388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants.
    Ptushenko VV; Ptushenko OS; Tikhonov AN
    Biochemistry (Mosc); 2014 Mar; 79(3):260-72. PubMed ID: 24821453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fluorescence, excited by light in the 380-540 nm wavelength range, in in cucumber leaves depends on the time of vegetation and light regime].
    Zavoruev VV; Zavorueva EN; Shelegov AV
    Biofizika; 2000; 45(4):704-11. PubMed ID: 11040981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Chlorophyll fluorescence induction and estimation of plant resistance to stress factors].
    Nesterenko TV; Tikhomirov AA; Shikhov VN
    Zh Obshch Biol; 2007; 68(6):444-58. PubMed ID: 18257288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fluorescence parameters of chlorophyll in leaves of caules plants in different environmental conditions].
    Iakovleva OV; Talipova EV; Kukarskikh GP; Krendeleeva TE; Rubin AB
    Biofizika; 2005; 50(6):1112-9. PubMed ID: 16358792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biophysical methods of ecological monitoring. Photosynthetic characteristics of tree plants growing in Moscow city].
    Ptushenko VV; Karavaev VA; Solntsev MK; Tikhonov AN
    Biofizika; 2013; 58(2):313-20. PubMed ID: 23755559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo monitoring of chlorophyll fluorescence response to low-dose gamma-irradiation in pumpkin (cucurbita pepo) leaves.
    Jovanić BR; Dramićanin MD
    Luminescence; 2003; 18(5):274-7. PubMed ID: 14587079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the room-temperature emission spectrum of chlorophyll during fast and slow phases of the Kautsky effect in intact leaves.
    Franck F; Dewez D; Popovic R
    Photochem Photobiol; 2005; 81(2):431-6. PubMed ID: 15584772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.
    Mielke MS; Schaffer B
    Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of leaf senescence on light dependence of chlorophyll fluorescence of radish leaves.
    Nesterenko TV; Shikhov VN; Tikhomirov AA
    Dokl Biochem Biophys; 2012; 442():15-8. PubMed ID: 22419086
    [No Abstract]   [Full Text] [Related]  

  • 12. Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light.
    Ptushenko VV; Ptushenko EA; Samoilova OP; Tikhonov AN
    Biosystems; 2013 Nov; 114(2):85-97. PubMed ID: 23948518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance.
    Priault P; Fresneau C; Noctor G; De Paepe R; Cornic G; Streb P
    J Exp Bot; 2006; 57(9):2075-85. PubMed ID: 16714313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorophyll alpha fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford clone) subjected to ozone and water stress.
    Desotgiu R; Pollastrini M; Cascio C; Gerosa G; Marzuoli R; Bussotti F
    Tree Physiol; 2012 Aug; 32(8):976-86. PubMed ID: 22848090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of shading on photosynthetic characteristics of Pinellia ternata leaves].
    Xue JP; Wang X; Zhang AM; Huang XD; He JQ; Chang L
    Zhongguo Zhong Yao Za Zhi; 2008 Dec; 33(24):2896-900. PubMed ID: 19294844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sunflower Leaf Structure Affects Chlorophyll
    Zou QQ; Liu DH; Sang M; Jiang CD
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field.
    Hallik L; Niinemets U; Kull O
    Plant Biol (Stuttg); 2012 Jan; 14(1):88-99. PubMed ID: 21972867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping grape berry photosynthesis by chlorophyll fluorescence imaging: the effect of saturating pulse intensity in different tissues.
    Breia R; Vieira S; da Silva JM; Gerós H; Cunha A
    Photochem Photobiol; 2013; 89(3):579-85. PubMed ID: 23336743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The acting spectra simulating and planting of high yield radish].
    Meng JW; Zheng RE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):577-9. PubMed ID: 12938369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.