These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23035573)

  • 1. Biofilm, ice recrystallization inhibition and freeze-thaw protection in an epiphyte community.
    Wu Z; Kan FW; She YM; Walker VK
    Prikl Biokhim Mikrobiol; 2012; 48(4):403-10. PubMed ID: 23035573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of low-temperature resistance in bacteria and potential applications.
    Wilson SL; Walker VK
    Environ Technol; 2010; 31(8-9):943-56. PubMed ID: 20662383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospecting for ice association: characterization of freeze-thaw selected enrichment cultures from latitudinally distant soils.
    Wilson SL; Grogan P; Walker VK
    Can J Microbiol; 2012 Apr; 58(4):402-12. PubMed ID: 22435705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-thaw tolerance and clues to the winter survival of a soil community.
    Walker VK; Palmer GR; Voordouw G
    Appl Environ Microbiol; 2006 Mar; 72(3):1784-92. PubMed ID: 16517623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of cell-free ice nuclei by Erwinia herbicola.
    Phelps P; Giddings TH; Prochoda M; Fall R
    J Bacteriol; 1986 Aug; 167(2):496-502. PubMed ID: 3525514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-tolerance between osmotic and freeze-thaw stress in microbial assemblages from temperate lakes.
    Wilson SL; Frazer C; Cumming BF; Nuin PA; Walker VK
    FEMS Microbiol Ecol; 2012 Nov; 82(2):405-15. PubMed ID: 22551442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.
    Suzuki S; Fukuda S; Fukushi Y; Arakawa K
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2090-2097. PubMed ID: 28942726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation.
    Uhlich GA; Rogers DP; Mosier DA
    Foodborne Pathog Dis; 2010 Aug; 7(8):935-43. PubMed ID: 20367070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a multispecies biofilm community by four root canal bacteria.
    Chávez de Paz LE
    J Endod; 2012 Mar; 38(3):318-23. PubMed ID: 22341068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria.
    Kozloff LM; Turner MA; Arellano F; Lute M
    J Bacteriol; 1991 Mar; 173(6):2053-60. PubMed ID: 1848220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and properties of intracellular proteins after cold acclimation of the ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686.
    Koda N; Aoki M; Kawahara H; Yamade K; Obata H
    Cryobiology; 2000 Nov; 41(3):195-203. PubMed ID: 11161552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv.
    John UP; Polotnianka RM; Sivakumaran KA; Chew O; Mackin L; Kuiper MJ; Talbot JP; Nugent GD; Mautord J; Schrauf GE; Spangenberg GC
    Plant Cell Environ; 2009 Apr; 32(4):336-48. PubMed ID: 19143989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three separate classes of bacterial ice nucleation structures.
    Turner MA; Arellano F; Kozloff LM
    J Bacteriol; 1990 May; 172(5):2521-6. PubMed ID: 2158972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Components of ice nucleation structures of bacteria.
    Turner MA; Arellano F; Kozloff LM
    J Bacteriol; 1991 Oct; 173(20):6515-27. PubMed ID: 1917876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm.
    Rodrigues DF; Elimelech M
    Environ Sci Technol; 2010 Jun; 44(12):4583-9. PubMed ID: 20465305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persister cells in a biofilm treated with a biocide.
    Simões LC; Lemos M; Pereira AM; Abreu AC; Saavedra MJ; Simões M
    Biofouling; 2011 Apr; 27(4):403-11. PubMed ID: 21547756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of Pseudomonas syringae.
    Palaiomylitou MA; Kalimanis A; Koukkou AI; Drainas C; Anastassopoulos E; Panopoulos NJ; Ekateriniadou LV; Kyriakidis DA
    Cryobiology; 1998 Aug; 37(1):67-76. PubMed ID: 9698431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.
    Kasuga J; Mizuno K; Arakawa K; Fujikawa S
    Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial dendrimer active against Escherichia coli biofilms.
    Hou S; Zhou C; Liu Z; Young AW; Shi Z; Ren D; Kallenbach NR
    Bioorg Med Chem Lett; 2009 Sep; 19(18):5478-81. PubMed ID: 19682902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of bacterial ice nucleation by polyglycerol polymers.
    Wowk B; Fahy GM
    Cryobiology; 2002 Feb; 44(1):14-23. PubMed ID: 12061844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.