These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23035573)

  • 21. Inhibition of bacterial ice nucleation by polyglycerol polymers.
    Wowk B; Fahy GM
    Cryobiology; 2002 Feb; 44(1):14-23. PubMed ID: 12061844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental control in tea fields to reduce infection by Pseudomonas syringae pv. theae.
    Tomihama T; Nonaka T; Nishi Y; Arai K
    Phytopathology; 2009 Feb; 99(2):209-16. PubMed ID: 19159313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of the twin-arginine translocase on the structure and antimicrobial susceptibility of Escherichia coli biofilms.
    Harrison JJ; Ceri H; Badry EA; Roper NJ; Tomlin KL; Turner RJ
    Can J Microbiol; 2005 Aug; 51(8):671-83. PubMed ID: 16234865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial structure and community of RBC biofilm removing nitrate and phosphorus from domestic wastewater.
    Lee H; Choi E; Yun Z; Park YK
    J Microbiol Biotechnol; 2008 Aug; 18(8):1459-69. PubMed ID: 18756109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The management of extracellular ice by petioles of frost-resistant herbaceous plants.
    McCully ME; Canny MJ; Huang CX
    Ann Bot; 2004 Nov; 94(5):665-74. PubMed ID: 15355865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance?
    Gilbert P; Allison DG; McBain AJ
    J Appl Microbiol; 2002; 92 Suppl():98S-110S. PubMed ID: 12000619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
    Parody-Morreale A; Murphy KP; Di Cera E; Fall R; DeVries AL; Gill SJ
    Nature; 1988 Jun; 333(6175):782-3. PubMed ID: 3386720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae.
    Gurian-Sherman D; Lindow SE
    Cryobiology; 1995 Apr; 32(2):129-38. PubMed ID: 7743815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional studies of the hrpM/opgH gene in Pseudomonas syringae during biofilm formation and in response to different environmental challenges.
    Penaloza-Vazquez A; Sreedharan A; Bender CL
    Environ Microbiol; 2010 Jun; 12(6):1452-67. PubMed ID: 20132277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ice-active characteristics of soil bacteria selected by ice-affinity.
    Wilson SL; Kelley DL; Walker VK
    Environ Microbiol; 2006 Oct; 8(10):1816-24. PubMed ID: 16958762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphatidylinositol as a Component of the Ice Nucleating Site of Pseudomonas syringae and Erwinia herbiola.
    Kozloff LM; Lute M; Westaway D
    Science; 1984 Nov; 226(4676):845-6. PubMed ID: 17759892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of mitomycin C on the expression and transport of ice-nuclei proteins of Erwinia herbicola].
    Chen QS; Gao XZ; Yan YL; Song LP; Pang GC; Guo SH
    Yi Chuan Xue Bao; 2005 May; 32(5):545-9. PubMed ID: 16018268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568.
    Hefford MA; D'Aoust S; Cyr TD; Austin JW; Sanders G; Kheradpir E; Kalmokoff ML
    Can J Microbiol; 2005 Mar; 51(3):197-208. PubMed ID: 15920617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ice-Binding Proteins in Plants.
    Bredow M; Walker VK
    Front Plant Sci; 2017; 8():2153. PubMed ID: 29312400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioactive lipopeptides of ice-nucleating snow bacterium Pseudomonas syringae strain 31R1.
    Fiore A; Mannina L; Sobolev AP; Salzano AM; Scaloni A; Grgurina I; Fullone MR; Gallo M; Swasey C; Fogliano V; Takemoto JY
    FEMS Microbiol Lett; 2008 Sep; 286(2):158-65. PubMed ID: 18789127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance?
    Gilbert P; Allison DG; McBain AJ
    Symp Ser Soc Appl Microbiol; 2002; (31):98S-110S. PubMed ID: 12481835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties.
    Obata H; Muryoi N; Kawahara H; Yamade K; Nishikawa J
    Cryobiology; 1999 Mar; 38(2):131-9. PubMed ID: 10191036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of fulvic acid and fulvic ions on Escherichia coli survival in river under repeated freeze-thaw cycles.
    Wang X; Zhang D; Chen W; Tao J; Xu M; Guo P
    Environ Pollut; 2019 Apr; 247():1100-1109. PubMed ID: 30823339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653.
    Kim SJ; Yim JH
    J Microbiol; 2007 Dec; 45(6):510-4. PubMed ID: 18176533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-scale production and purification of an Erwinia ananas ice nucleation protein and evaluation of its ice nucleation activity.
    Watabe S; Abe K; Hirata A; Emori Y; Watanabe M; Arai S
    Biosci Biotechnol Biochem; 1993 Apr; 57(4):603-6. PubMed ID: 7763657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.