BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23035715)

  • 1. Quantification of carbon nanomaterials in vivo.
    Wang H; Yang ST; Cao A; Liu Y
    Acc Chem Res; 2013 Mar; 46(3):750-60. PubMed ID: 23035715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach.
    Handy RD; Al-Bairuty G; Al-Jubory A; Ramsden CS; Boyle D; Shaw BJ; Henry TB
    J Fish Biol; 2011 Oct; 79(4):821-53. PubMed ID: 21967577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of nanomaterials in vivo: blood circulation and organ clearance.
    Wang B; He X; Zhang Z; Zhao Y; Feng W
    Acc Chem Res; 2013 Mar; 46(3):761-9. PubMed ID: 23964655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomaterial translocation--the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs--a review.
    Kermanizadeh A; Balharry D; Wallin H; Loft S; Møller P
    Crit Rev Toxicol; 2015; 45(10):837-72. PubMed ID: 26140391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhalation toxicity assessment of carbon-based nanoparticles.
    Morimoto Y; Horie M; Kobayashi N; Shinohara N; Shimada M
    Acc Chem Res; 2013 Mar; 46(3):770-81. PubMed ID: 22574947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials.
    Andón FT; Fadeel B
    Acc Chem Res; 2013 Mar; 46(3):733-42. PubMed ID: 22720979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotoxicity: a growing need for study in the endocrine system.
    Lu X; Liu Y; Kong X; Lobie PE; Chen C; Zhu T
    Small; 2013 May; 9(9-10):1654-71. PubMed ID: 23401134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology.
    Chen C; Li YF; Qu Y; Chai Z; Zhao Y
    Chem Soc Rev; 2013 Nov; 42(21):8266-303. PubMed ID: 23868609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media.
    Prasad A; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 537():479-86. PubMed ID: 26322596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallomics insights for in vivo studies of metal based nanomaterials.
    Wang B; Feng W; Zhao Y; Chai Z
    Metallomics; 2013 Jun; 5(7):793-803. PubMed ID: 23775512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable isotope labeling of metal/metal oxide nanomaterials for environmental and biological tracing.
    Zhang P; Misra S; Guo Z; Rehkämper M; Valsami-Jones E
    Nat Protoc; 2019 Oct; 14(10):2878-2899. PubMed ID: 31515516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk management strategy to increase the safety of workers in the nanomaterials industry.
    Ling MP; Lin WC; Liu CC; Huang YS; Chueh MJ; Shih TS
    J Hazard Mater; 2012 Aug; 229-230():83-93. PubMed ID: 22727485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets.
    Tarrahi R; Mahjouri S; Khataee A
    Ecotoxicol Environ Saf; 2021 Jan; 208():111697. PubMed ID: 33396028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of stable isotope tracing for ZnO nanomaterials--new constraints from high precision isotope analyses and modeling.
    Larner F; Rehkämper M
    Environ Sci Technol; 2012 Apr; 46(7):4149-58. PubMed ID: 22394426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the relationship between nanomaterial hazard and physicochemical properties: Informing the exploitation of nanomaterials within therapeutic and diagnostic applications.
    Johnston H; Brown D; Kermanizadeh A; Gubbins E; Stone V
    J Control Release; 2012 Dec; 164(3):307-13. PubMed ID: 22940205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Safety assessment of nanomaterials in reproductive developmental field].
    Yamashita K; Yoshioka Y
    Yakugaku Zasshi; 2012; 132(3):331-5. PubMed ID: 22382838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity.
    Wang A; Marinakos SM; Badireddy AR; Powers CM; Houck KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(5):430-48. PubMed ID: 23661551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions.
    Yang ST; Liu Y; Wang YW; Cao A
    Small; 2013 May; 9(9-10):1635-53. PubMed ID: 23341247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.