These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 23035813)
1. Domain swapping of the heme and N-terminal α-helix in Hydrogenobacter thermophilus cytochrome c(552) dimer. Hayashi Y; Nagao S; Osuka H; Komori H; Higuchi Y; Hirota S Biochemistry; 2012 Oct; 51(43):8608-16. PubMed ID: 23035813 [TBL] [Abstract][Full Text] [Related]
2. Domain-swapped dimer of Pseudomonas aeruginosa cytochrome c551: structural insights into domain swapping of cytochrome c family proteins. Nagao S; Ueda M; Osuka H; Komori H; Kamikubo H; Kataoka M; Higuchi Y; Hirota S PLoS One; 2015; 10(4):e0123653. PubMed ID: 25853415 [TBL] [Abstract][Full Text] [Related]
3. Maintenance of the secondary structure of horse cytochrome c during the conversion process of monomers to oligomers by addition of ethanol. Hirota S; Ueda M; Hayashi Y; Nagao S; Kamikubo H; Kataoka M J Biochem; 2012 Dec; 152(6):521-9. PubMed ID: 22923742 [TBL] [Abstract][Full Text] [Related]
4. Effect of methionine80 heme coordination on domain swapping of cytochrome c. Hirota S; Yamashiro N; Wang Z; Nagao S J Biol Inorg Chem; 2017 Jul; 22(5):705-712. PubMed ID: 28246923 [TBL] [Abstract][Full Text] [Related]
5. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping. Yamanaka M; Nagao S; Komori H; Higuchi Y; Hirota S Protein Sci; 2015 Mar; 24(3):366-75. PubMed ID: 25586341 [TBL] [Abstract][Full Text] [Related]
7. Cytochrome c polymerization by successive domain swapping at the C-terminal helix. Hirota S; Hattori Y; Nagao S; Taketa M; Komori H; Kamikubo H; Wang Z; Takahashi I; Negi S; Sugiura Y; Kataoka M; Higuchi Y Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12854-9. PubMed ID: 20615990 [TBL] [Abstract][Full Text] [Related]
8. Effects of heme pocket structure and mobility on cytochrome c stability. Wen X; Patel KM; Russell BS; Bren KL Biochemistry; 2007 Mar; 46(9):2537-44. PubMed ID: 17279778 [TBL] [Abstract][Full Text] [Related]
9. Formation of oligomeric cytochrome c during folding by intermolecular hydrophobic interaction between N- and C-terminal α-helices. Parui PP; Deshpande MS; Nagao S; Kamikubo H; Komori H; Higuchi Y; Kataoka M; Hirota S Biochemistry; 2013 Dec; 52(48):8732-44. PubMed ID: 24206001 [TBL] [Abstract][Full Text] [Related]
10. Formation of domain-swapped oligomer of cytochrome C from its molten globule state oligomer. Deshpande MS; Parui PP; Kamikubo H; Yamanaka M; Nagao S; Komori H; Kataoka M; Higuchi Y; Hirota S Biochemistry; 2014 Jul; 53(28):4696-703. PubMed ID: 24981551 [TBL] [Abstract][Full Text] [Related]
11. Design and synthesis of de novo cytochromes c. Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Hydrogenobacter thermophilus cytochromes c(552 )expressed in the cytoplasm and periplasm of Escherichia coli. Karan EF; Russell BS; Bren KL J Biol Inorg Chem; 2002 Mar; 7(3):260-72. PubMed ID: 11935350 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the electron carrier domain of the reaction center cytochrome c(z) subunit from green photosynthetic bacterium Chlorobium tepidum. Hirano Y; Higuchi M; Azai C; Oh-Oka H; Miki K; Wang ZY J Mol Biol; 2010 Apr; 397(5):1175-87. PubMed ID: 20156447 [TBL] [Abstract][Full Text] [Related]
14. Control of the stability of Hydrogenobacter thermophilus cytochrome C(552) through alteration of the basicity of the N-terminal amino group of the polypeptide chain. Tai H; Munegumi T; Yamamoto Y Inorg Chem; 2010 Dec; 49(23):10840-6. PubMed ID: 21058669 [TBL] [Abstract][Full Text] [Related]
15. Protein surface charge effect on 3D domain swapping in cells for c-type cytochromes. Yang H; Yamanaka M; Nagao S; Yasuhara K; Shibata N; Higuchi Y; Hirota S Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140265. PubMed ID: 31437585 [TBL] [Abstract][Full Text] [Related]
16. Cytochrome rC552, formed during expression of the truncated, Thermus thermophilus cytochrome c552 gene in the cytoplasm of Escherichia coli, reacts spontaneously to form protein-bound 2-formyl-4-vinyl (Spirographis) heme. Fee JA; Todaro TR; Luna E; Sanders D; Hunsicker-Wang LM; Patel KM; Bren KL; Gomez-Moran E; Hill MG; Ai J; Loehr TM; Oertling WA; Williams PA; Stout CD; McRee D; Pastuszyn A Biochemistry; 2004 Sep; 43(38):12162-76. PubMed ID: 15379555 [TBL] [Abstract][Full Text] [Related]
17. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment. Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817 [TBL] [Abstract][Full Text] [Related]
18. Structure analysis and comparative characterization of the cytochrome c' and flavocytochrome c from thermophilic purple photosynthetic bacterium Thermochromatium tepidum. Hirano Y; Kimura Y; Suzuki H; Miki K; Wang ZY Biochemistry; 2012 Aug; 51(33):6556-67. PubMed ID: 22827326 [TBL] [Abstract][Full Text] [Related]
19. Structural and oxygen binding properties of dimeric horse myoglobin. Nagao S; Osuka H; Yamada T; Uni T; Shomura Y; Imai K; Higuchi Y; Hirota S Dalton Trans; 2012 Oct; 41(37):11378-85. PubMed ID: 22885714 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of the thermostability of Hydrogenobacter thermophilus cytochrome c(552) through introduction of an extra methylene group into its hydrophobic protein interior. Tai H; Irie K; Mikami S; Yamamoto Y Biochemistry; 2011 Apr; 50(15):3161-9. PubMed ID: 21417336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]