BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23035846)

  • 1. Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase.
    Tan M; Zhu B; Liu RJ; Chen X; Zhou XL; Wang ED
    Biochem J; 2013 Jan; 449(1):123-31. PubMed ID: 23035846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase.
    Mursinna RS; Lee KW; Briggs JM; Martinis SA
    Biochemistry; 2004 Jan; 43(1):155-65. PubMed ID: 14705941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing.
    Zhou XL; Wang ED
    Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu.
    Mursinna RS; Lincecum TL; Martinis SA
    Biochemistry; 2001 May; 40(18):5376-81. PubMed ID: 11331000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase.
    Chen JF; Li T; Wang ED; Wang YL
    Biochemistry; 2001 Feb; 40(5):1144-9. PubMed ID: 11170439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Yin and Yang of tRNA: proper binding of acceptor end determines the catalytic balance of editing and aminoacylation.
    Tan M; Wang M; Zhou XL; Yan W; Eriani G; Wang ED
    Nucleic Acids Res; 2013 May; 41(10):5513-23. PubMed ID: 23585282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase.
    Zhai Y; Nawaz MH; Lee KW; Kirkbride E; Briggs JM; Martinis SA
    Biochemistry; 2007 Mar; 46(11):3331-7. PubMed ID: 17311409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2005 Oct; 12(10):915-22. PubMed ID: 16155584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism.
    Zhai Y; Martinis SA
    Biochemistry; 2005 Nov; 44(47):15437-43. PubMed ID: 16300391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation.
    Tukalo M; Yaremchuk A; Fukunaga R; Yokoyama S; Cusack S
    Nat Struct Mol Biol; 2005 Oct; 12(10):923-30. PubMed ID: 16155583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Groups on the side chain of T252 in Escherichia coli leucyl-tRNA synthetase are important for discrimination of amino acids and cell viability.
    Xu MG; Li J; Du X; Wang ED
    Biochem Biophys Res Commun; 2004 May; 318(1):11-6. PubMed ID: 15110746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution.
    Zhao MW; Zhu B; Hao R; Xu MG; Eriani G; Wang ED
    EMBO J; 2005 Apr; 24(7):1430-9. PubMed ID: 15775966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination.
    Liu Y; Liao J; Zhu B; Wang ED; Ding J
    Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase.
    Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED
    Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity.
    Tan M; Yan W; Liu RJ; Wang M; Chen X; Zhou XL; Wang ED
    Biochem J; 2012 Apr; 443(2):477-84. PubMed ID: 22292813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the nucleophilic factors and the productive complex for the editing reaction by leucyl-tRNA synthetase.
    Hagiwara Y; Nureki O; Tateno M
    FEBS Lett; 2009 Jun; 583(12):1901-8. PubMed ID: 19463822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aminoacyl-tRNA synthetase with a defunct editing site.
    Lue SW; Kelley SO
    Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucine-specific domain modulates the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase.
    Yan W; Tan M; Eriani G; Wang ED
    Nucleic Acids Res; 2013 May; 41(9):4988-98. PubMed ID: 23525458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.