These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23036029)

  • 21. How can dialyzer designs improve solute clearances for hemodialysis patients?
    Davenport A
    Hemodial Int; 2014 Oct; 18 Suppl 1():S43-7. PubMed ID: 25330831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of ultrafiltration on solute clearances in cuprophan and cellulose hollow fiber dialyzers: in vitro and clinical studies.
    Nolph KD; Twardowski ZJ; Hopkins CA; Rubin J; van Stone JC
    J Lab Clin Med; 1978 Jun; 91(6):998-1010. PubMed ID: 650063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of biocompatibility in polysulfone dialysis membranes with different sterilization.
    Togo K; Yamamoto M; Ono T; Imai M; Akiyama K; Ebine K; Yamashita AC
    Hemodial Int; 2018 Oct; 22(S2):S10-S14. PubMed ID: 30411467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What is good about PD + HD combined therapy.
    Yamashita AC; Tomisawa N
    Hemodial Int; 2011 Oct; 15 Suppl 1():S15-21. PubMed ID: 22093595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction in beta2-microglobulin with super-flux versus high-flux dialysis membranes: results of a 6-week, randomized, double-blind, crossover trial.
    Pellicano R; Polkinghorne KR; Kerr PG
    Am J Kidney Dis; 2008 Jul; 52(1):93-101. PubMed ID: 18423807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of re-utilization of cuprophan capillary dialysers with different liquids on their biocompatibility and effectiveness of elimination].
    Orłowski A; Szepietowski T
    Polim Med; 1992; 22(1-2):59-72. PubMed ID: 1461837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comment on middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Polaschegg HD
    Hemodial Int; 2006 Apr; 10(2):215-6; author reply 216. PubMed ID: 16623678
    [No Abstract]   [Full Text] [Related]  

  • 29. A new method to evaluate the local clearance at different annular rings inside hemodialyzers.
    Huang Z; Klein E; Li B; Poh C; Liao Z; Clark WR; Gao D
    ASAIO J; 2003; 49(6):692-7. PubMed ID: 14655736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiocontrast removal by dialysis membranes.
    Gouge SF; Moore J; Atkins F; Hirszel P
    Blood Purif; 1991; 9(4):182-7. PubMed ID: 1818581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Evolution and physical principles of convection-based dialysis treatment].
    David S
    G Ital Nefrol; 2012; 29 Suppl 55():S3-11. PubMed ID: 22723138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precise Quantitative Assessment of the Clinical Performances of Two High-Flux Polysulfone Hemodialyzers in Hemodialysis: Validation of a Blood-Based Simple Kinetic Model Versus Direct Dialysis Quantification.
    Lim PS; Lin Y; Chen M; Xu X; Shi Y; Bowry S; Canaud B
    Artif Organs; 2018 May; 42(5):E55-E66. PubMed ID: 29193165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?
    Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J
    Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in vivo-in vitro study of cefepime and cefazolin dialytic clearance during high-flux hemodialysis.
    Maynor LM; Carl DE; Matzke GR; Gehr TW; Farthing C; Farthing D; Brophy DF
    Pharmacotherapy; 2008 Aug; 28(8):977-83. PubMed ID: 18657014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced functional performance characteristics of a new polysulfone membrane for high-flux hemodialysis.
    Klingel R; Ahrenholz P; Schwarting A; Röckel A
    Blood Purif; 2002; 20(4):325-33. PubMed ID: 12169840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of ultrafiltration on solute clearances in parallel plate dialyzers.
    Nolph KD; Hopkins C; Van Stone J
    Clin Nephrol; 1977 Nov; 8(5):453-8. PubMed ID: 589876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vibration enhances clearance of solutes with varying molecular weights during in vitro hemodialysis.
    Mueller BA; Jasiak KD; Thiel SR; Stevenson JM; Vilay AM; Scoville BA; Churchwell MD; Pasko DA; Perkins N
    ASAIO J; 2013; 59(2):140-4. PubMed ID: 23438776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental evaluation of flow and dialysis performance of hollow-fiber dialyzers with different packing densities.
    Hirano A; Kida S; Yamamoto K; Sakai K
    J Artif Organs; 2012 Jun; 15(2):168-75. PubMed ID: 22116168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance.
    Hirano A; Yamamoto K; Matsuda M; Ogawa T; Yakushiji T; Miyasaka T; Sakai K
    Ther Apher Dial; 2011 Feb; 15(1):66-74. PubMed ID: 21272255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Verification of physicochemical structures of dialysis membrane using reversal dialysis technique.
    Yamashita AC; Ono T; Tomisawa N
    Hemodial Int; 2017 Oct; 21 Suppl 2():S3-S9. PubMed ID: 29064175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.