These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23036029)

  • 41. Influence of Sterilization and Storage Period on Elution of Polyvinylpyrrolidone from Wet-Type Polysulfone Membrane Dialyzers.
    Miyata M; Konishi S; Shimamoto Y; Kamada A; Umimoto K
    ASAIO J; 2015; 61(4):468-73. PubMed ID: 25851313
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Small-solute and middle-molecule clearances during continuous flow peritoneal dialysis.
    Leypoldt JK; Burkart JM
    Adv Perit Dial; 2002; 18():26-31. PubMed ID: 12402582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The impact of standard high-flux polysulfone versus novel high-flux polysulfone dialysis membranes on inflammatory markers: a randomized, single-blinded, controlled clinical trial.
    Kerr PG; Sutherland WH; de Jong S; Vaithalingham I; Williams SM; Walker RJ
    Am J Kidney Dis; 2007 Apr; 49(4):533-9. PubMed ID: 17386321
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of peracetic acid-hydrogen peroxide reprocessing on dialyzer solute and water permeability.
    Scott MK; Mueller BA; Sowinski KM
    Pharmacotherapy; 1999 Sep; 19(9):1042-9. PubMed ID: 10610010
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Technical characterization of dialysis fluid flow and mass transfer rate in dialyzers with various filtration coefficients using dimensionless correlation equation.
    Fukuda M; Yoshimura K; Namekawa K; Sakai K
    J Artif Organs; 2017 Jun; 20(2):145-151. PubMed ID: 28084568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dialyzer membranes as determinants of the adequacy of dialysis.
    Chelamcharla M; Leypoldt JK; Cheung AK
    Semin Nephrol; 2005 Mar; 25(2):81-9. PubMed ID: 15791559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Technical and clinical evaluation of a new asymmetric polysulfone membrane (Biosulfane).
    Ronco C; Brendolan A; Crepaldi C; Bettini MC; Scabardi M; Cappellari F; Tasinazzo L; Fortunato L; La Greca G
    Int J Artif Organs; 1993 Aug; 16(8):573-84. PubMed ID: 8225648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Difference in beta 2-microglobulin removal between cellulosic and synthetic polymer membrane dialyzers.
    Mineshima M; Hoshino T; Era K; Kitano Y; Suzuki T; Sanaka T; Teraoka S; Agishi T; Ota K
    ASAIO Trans; 1990; 36(3):M643-6. PubMed ID: 2252773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transport Characteristics of Asymmetric Cellulose Triacetate Hemodialysis Membranes.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Blood Purif; 2018; 45(1-3):46-52. PubMed ID: 29161718
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water permeability of high-flux dialyzer membranes after Renalin reprocessing.
    Labib ME; Murawski J; Tabani Y; Wolff SH; Zydney AL; Funderburk FR; Huang Z; Kapoian T; Sherman RA
    Kidney Int; 2007 Jun; 71(11):1177-80. PubMed ID: 17377505
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino acid losses during hemodialysis: effects of high-solute flux and parenteral nutrition in acute renal failure.
    Hynote ED; McCamish MA; Depner TA; Davis PA
    JPEN J Parenter Enteral Nutr; 1995; 19(1):15-21. PubMed ID: 7658594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of convective transport by internal filtration in a modified experimental hemodialyzer: technical note.
    Ronco C; Orlandini G; Brendolan A; Lupi A; La Greca G
    Kidney Int; 1998 Sep; 54(3):979-85. PubMed ID: 9734626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potential of dual-skinned, high-flux membranes to reduce backtransport in hemodialysis.
    Soltys PJ; Zydney A; Leypoldt JK; Henderson LW; Ofsthun NJ
    Kidney Int; 2000 Aug; 58(2):818-28. PubMed ID: 10916107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Replication of fouling in vitro in hollow fiber dialyzers by albumin immobilization.
    Kiguchi T; Tomisawa N; Yamashita AC
    J Artif Organs; 2022 Dec; 25(4):329-335. PubMed ID: 35146587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The use of electrolyzed solutions for the cleaning and disinfecting of dialyzers.
    Tanaka N; Tanaka N; Fujisawa T; Daimon T; Fujiwara K; Yamamoto M; Abe T
    Artif Organs; 2000 Dec; 24(12):921-8. PubMed ID: 11121970
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An in vitro comparison of capillary flow dialyzer performances on a single needle system (double headpump).
    Ringoir S; Piron M
    Int J Artif Organs; 1979 May; 2(3):125-31. PubMed ID: 468404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurement of backfiltration rates during hemodialysis with highly permeable membranes.
    Leypoldt JK; Schmidt B; Gurland HJ
    Blood Purif; 1991; 9(2):74-84. PubMed ID: 1760145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of Membrane Surface Area on Solute Removal Performance of Dialyzers with Fouling.
    Kiguchi T; Ito H; Yamashita AC
    Membranes (Basel); 2022 Jul; 12(7):. PubMed ID: 35877887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hemodialyzer performance: an assessment of currently available units.
    Hone PW; Ward RA; Mahony JF; Farrell PC
    J Dial; 1977; 1(3):285-310. PubMed ID: 614389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro performance of hemodialysis membranes after repeated processing.
    Johnson A; Mishkin GJ; Lew SQ; Mishkin M; Abramson F; Lecchi P
    Am J Kidney Dis; 2003 Sep; 42(3):561-6. PubMed ID: 12955685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.