These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23036030)

  • 1. Physiologic volume of phosphorus during hemodialysis: predictions from a pseudo one-compartment model.
    Leypoldt JK; Akonur A; Agar BU; Culleton BF
    Hemodial Int; 2012 Oct; 16 Suppl 1():S15-9. PubMed ID: 23036030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-specific phosphorus mobilization clearance during nocturnal and short daily hemodialysis.
    Agar BU; Troidle L; Finkelstein FO; Kohn OF; Akonur A; Leypoldt JK
    Hemodial Int; 2012 Oct; 16(4):491-6. PubMed ID: 22574966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of beta2-microglobulin and phosphate during hemodialysis: effects of treatment frequency and duration.
    Leypoldt JK
    Semin Dial; 2005; 18(5):401-8. PubMed ID: 16191181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplified phosphorus kinetic modeling: predicting changes in predialysis serum phosphorus concentration after altering the hemodialysis prescription.
    Leypoldt JK; Agar BU; Culleton BF
    Nephrol Dial Transplant; 2014 Jul; 29(7):1423-9. PubMed ID: 24569497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple method to estimate phosphorus mobilization in hemodialysis using only predialytic and postdialytic blood samples.
    Agar BU; Akonur A; Cheung AK; Leypoldt JK
    Hemodial Int; 2011 Oct; 15 Suppl 1():S9-S14. PubMed ID: 22093606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus kinetics during hemodiafiltration: analysis using a pseudo-one-compartment model.
    Leypoldt JK; Agar BU; Akonur A; Culleton BF
    Blood Purif; 2013; 35 Suppl 1():59-63. PubMed ID: 23466381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady state phosphorus mass balance model during hemodialysis based on a pseudo one-compartment kinetic model.
    Leypoldt JK; Agar BU; Akonur A; Gellens ME; Culleton BF
    Int J Artif Organs; 2012 Nov; 35(11):969-80. PubMed ID: 23065870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus dynamics during hemodialysis.
    Kjellstrand CM; Ing TS; Kjellstrand PT; Odar-Cederlof I; Lagg CR
    Hemodial Int; 2011 Apr; 15(2):226-33. PubMed ID: 21352467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Pseudo-One Compartment Model of Phosphorus Kinetics During Hemodialysis: Further Supporting Evidence.
    Leypoldt JK; Agar BU; Cheung AK; Bernardo AA
    Artif Organs; 2017 Nov; 41(11):1043-1048. PubMed ID: 29148130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily dialyses decrease plasma levels of brain natriuretic peptide (BNP), a biomarker of left ventricular dysfunction.
    Odar-Cederlöf I; Bjellerup P; Williams A; Blagg CR; Twardowski Z; Ting G; Kjellstrand CM
    Hemodial Int; 2006 Oct; 10(4):394-8. PubMed ID: 17014518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced solute removal with intermittent, in-center, 8-hour nocturnal hemodialysis.
    Troidle L; Finkelstein F; Hotchkiss M; Leypoldt JK
    Hemodial Int; 2009 Oct; 13(4):487-91. PubMed ID: 19840141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of phosphorus during hemodialysis and the calculation of its effective dialysis clearance.
    Schück O; Kaslikov J
    Clin Nephrol; 1997 Jun; 47(6):379-83. PubMed ID: 9202868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solute kinetics with short-daily home hemodialysis using slow dialysate flow rate.
    Kohn OF; Coe FL; Ing TS
    Hemodial Int; 2010 Jan; 14(1):39-46. PubMed ID: 19758296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-pool kinetic model predicts phosphate concentrations during and shortly following a conventional (three times weekly) hemodialysis session.
    Daugirdas JT
    Nephrol Dial Transplant; 2018 Jan; 33(1):76-84. PubMed ID: 27738228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic model of inorganic phosphorus mass balance in hemodialysis therapy.
    Gotch FA; Panlilio F; Sergeyeva O; Rosales L; Folden T; Kaysen G; Levin NW
    Blood Purif; 2003; 21(1):51-7. PubMed ID: 12566662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Factors which influence phosphorus removal in hemodialysis].
    Gallar P; Ortiz M; Ortega O; Rodríguez I; Seijas V; Carreño A; Oliet A; Vigil A
    Nefrologia; 2007; 27(1):46-52. PubMed ID: 17402879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of convective flow on phosphorus removal in maintenance hemodialysis patients.
    Lornoy W; De Meester J; Becaus I; Billiouw JM; Van Malderen PA; Van Pottelberge M
    J Ren Nutr; 2006 Jan; 16(1):47-53. PubMed ID: 16414441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate Kinetics During Weekly Cycle of Hemodialysis Sessions: Application of Mathematical Modeling.
    Debowska M; Poleszczuk J; Wojcik-Zaluska A; Ksiazek A; Zaluska W
    Artif Organs; 2015 Dec; 39(12):1005-14. PubMed ID: 25994493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate removal with several thrice-weekly dialysis methods in overweight hemodialysis patients.
    Tonelli M; Wang W; Hemmelgarn B; Lloyd A; Manns B;
    Am J Kidney Dis; 2009 Dec; 54(6):1108-15. PubMed ID: 19619920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urea kinetics and dialysis treatment time predict vancomycin elimination during high-flux hemodialysis.
    Schaedeli F; Uehlinger DE
    Clin Pharmacol Ther; 1998 Jan; 63(1):26-38. PubMed ID: 9465839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.