BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23036132)

  • 1. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells.
    Lee JH; Nam JM; Jeon KS; Lim DK; Kim H; Kwon S; Lee H; Suh YD
    ACS Nano; 2012 Nov; 6(11):9574-84. PubMed ID: 23036132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.
    Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D
    Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays.
    Kim JM; Kim J; Choi K; Nam JM
    Adv Mater; 2023 Apr; 35(15):e2208250. PubMed ID: 36680474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.
    Lim DK; Jeon KS; Hwang JH; Kim H; Kwon S; Suh YD; Nam JM
    Nat Nanotechnol; 2011 May; 6(7):452-60. PubMed ID: 21623360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles.
    Zhang H; Harpster MH; Wilson WC; Johnson PA
    Langmuir; 2012 Feb; 28(8):4030-7. PubMed ID: 22276995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid.
    Jia JL; Xu HH; Zhang GR; Hu Z; Xu BQ
    Nanotechnology; 2012 Dec; 23(49):495710. PubMed ID: 23149673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.
    Sztainbuch IW
    J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles.
    Lee JH; Oh JW; Nam SH; Cha YS; Kim GH; Rhim WK; Kim NH; Kim J; Han SW; Suh YD; Nam JM
    Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection.
    Lim DK; Jeon KS; Kim HM; Nam JM; Suh YD
    Nat Mater; 2010 Jan; 9(1):60-7. PubMed ID: 20010829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles.
    Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D
    Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman scattering characterization of 1,4-phenylenediisocyanide in Au-Au and Ag-Au nanogaps.
    Kim K; Choi JY; Shin KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():3-9. PubMed ID: 22326719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array.
    Xia L; Yang Z; Yin S; Guo W; Li S; Xie W; Huang D; Deng Q; Shi H; Cui H; Du C
    Opt Express; 2013 May; 21(9):11349-55. PubMed ID: 23669991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles.
    Harper MM; Dougan JA; Shand NC; Graham D; Faulds K
    Analyst; 2012 May; 137(9):2063-8. PubMed ID: 22434199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering of 4-aminobenzenethiol in Ag sol: relative intensity of a1- and b2-type bands invariant against aggregation of Ag nanoparticles.
    Kim K; Yoon JK; Lee HB; Shin D; Shin KS
    Langmuir; 2011 Apr; 27(8):4526-31. PubMed ID: 21405076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.