BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 23036339)

  • 1. New models and predictions for Brownian coagulation of non-interacting spheres.
    Kelkar AV; Dong J; Franses EI; Corti DS
    J Colloid Interface Sci; 2013 Jan; 389(1):188-98. PubMed ID: 23036339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions.
    Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-ideal diffusion effects, short-range ordering, and unsteady-state effects strongly influence Brownian aggregation rates in concentrated dispersions of interacting spheres.
    Kelkar AV; Franses EI; Corti DS
    J Chem Phys; 2015 Aug; 143(7):074706. PubMed ID: 26298147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonideal diffusion effects and short-range ordering lead to higher aggregation rates in concentrated hard-sphere dispersions.
    Kelkar AV; Franses EI; Corti DS
    Langmuir; 2014 Apr; 30(13):3647-57. PubMed ID: 24646405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamics of discrete-particle models of spherical colloids: a multiparticle collision dynamics simulation study.
    Poblete S; Wysocki A; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033314. PubMed ID: 25314571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.
    Goddard BD; Nold A; Savva N; Yatsyshin P; Kalliadasis S
    J Phys Condens Matter; 2013 Jan; 25(3):035101. PubMed ID: 23220969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of hydrodynamic interactions in Brownian rod suspensions.
    Pryamitsyn V; Ganesan V
    J Chem Phys; 2008 Apr; 128(13):134901. PubMed ID: 18397101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Smoluchowski model of crystallization dynamics of small colloidal clusters.
    Beltran-Villegas DJ; Sehgal RM; Maroudas D; Ford DM; Bevan MA
    J Chem Phys; 2011 Oct; 135(15):154506. PubMed ID: 22029323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamics of granular gases of viscoelastic particles.
    Brilliantov NV; Pöschel T
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):415-28. PubMed ID: 16214686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instabilities in granular binary mixtures at moderate densities.
    Mitrano PP; Garzó V; Hrenya CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020201. PubMed ID: 25353402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: virial expansions and simulation.
    Kędzierski M; Wajnryb E
    J Chem Phys; 2011 Oct; 135(16):164104. PubMed ID: 22047225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques.
    Saadat A; Khomami B
    J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-time rheology and diffusion in suspensions of Yukawa-type colloidal particles.
    Heinen M; Banchio AJ; Nägele G
    J Chem Phys; 2011 Oct; 135(15):154504. PubMed ID: 22029321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of vesicle self-assembly and dissolution.
    Noguchi H; Gompper G
    J Chem Phys; 2006 Oct; 125(16):164908. PubMed ID: 17092140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of concentrated hard-sphere colloids near a wall.
    Michailidou VN; Petekidis G; Swan JW; Brady JF
    Phys Rev Lett; 2009 Feb; 102(6):068302. PubMed ID: 19257641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive model for diffusion-limited aggregation kinetics of nanocolloids under high concentration.
    Lattuada M
    J Phys Chem B; 2012 Jan; 116(1):120-9. PubMed ID: 22148884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pair diffusion, hydrodynamic interactions, and available volume in dense fluids.
    Mittal J; Hummer G
    J Chem Phys; 2012 Jul; 137(3):034110. PubMed ID: 22830686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale-linking simulation of irreversible colloidal deposition in the presence of DLVO interactions.
    Magan RV; Sureshkumar R
    J Colloid Interface Sci; 2006 May; 297(2):389-406. PubMed ID: 16356508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical reaction dynamics within anisotropic solvents in time-dependent fields.
    Hershkovits E; Hernandez R
    J Chem Phys; 2005 Jan; 122(1):14509. PubMed ID: 15638676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.