These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23036449)

  • 1. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling.
    Seth AK; Chorley P; Barnett LC
    Neuroimage; 2013 Jan; 65():540-55. PubMed ID: 23036449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG.
    Astolfi L; Cincotti F; Mattia D; Salinari S; Babiloni C; Basilisco A; Rossini PM; Ding L; Ni Y; He B; Marciani MG; Babiloni F
    Magn Reson Imaging; 2004 Dec; 22(10):1457-70. PubMed ID: 15707795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear connectivity by Granger causality.
    Marinazzo D; Liao W; Chen H; Stramaglia S
    Neuroimage; 2011 Sep; 58(2):330-8. PubMed ID: 20132895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lag-based effective connectivity applied to fMRI: a simulation study highlighting dependence on experimental parameters and formulation.
    Rodrigues J; Andrade A
    Neuroimage; 2014 Apr; 89():358-77. PubMed ID: 24513528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution.
    Roebroeck A; Formisano E; Goebel R
    Neuroimage; 2011 Sep; 58(2):296-302. PubMed ID: 19786106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kernel Granger causality mapping effective connectivity on FMRI data.
    Liao W; Marinazzo D; Pan Z; Gong Q; Chen H
    IEEE Trans Med Imaging; 2009 Nov; 28(11):1825-35. PubMed ID: 19709972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions.
    Kim J; Horwitz B
    Magn Reson Imaging; 2008 Jun; 26(5):583-93. PubMed ID: 18191524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of intra- and inter-subject variability of hemodynamic responses on group level Granger causality analyses.
    Schippers MB; Renken R; Keysers C
    Neuroimage; 2011 Jul; 57(1):22-36. PubMed ID: 21316469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals.
    Riera JJ; Watanabe J; Kazuki I; Naoki M; Aubert E; Ozaki T; Kawashima R
    Neuroimage; 2004 Feb; 21(2):547-67. PubMed ID: 14980557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GMAC: a Matlab toolbox for spectral Granger causality analysis of fMRI data.
    Tana MG; Sclocco R; Bianchi AM
    Comput Biol Med; 2012 Oct; 42(10):943-56. PubMed ID: 22925560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A graphical approach for evaluating effective connectivity in neural systems.
    Eichler M
    Philos Trans R Soc Lond B Biol Sci; 2005 May; 360(1457):953-67. PubMed ID: 16087440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Granger causality a viable technique for analyzing fMRI data?
    Wen X; Rangarajan G; Ding M
    PLoS One; 2013; 8(7):e67428. PubMed ID: 23861763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling and analysis of time-variant directed interrelations between brain regions based on BOLD-signals.
    Hemmelmann D; Ungureanu M; Hesse W; Wüstenberg T; Reichenbach JR; Witte OW; Witte H; Leistritz L
    Neuroimage; 2009 Apr; 45(3):722-37. PubMed ID: 19280694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
    Khalili-Mahani N; Chang C; van Osch MJ; Veer IM; van Buchem MA; Dahan A; Beckmann CF; van Gerven JM; Rombouts SA
    Neuroimage; 2013 Jan; 65():499-510. PubMed ID: 23022093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint EEG/fMRI state space model for the detection of directed interactions in human brains--a simulation study.
    Lenz M; Musso M; Linke Y; Tüscher O; Timmer J; Weiller C; Schelter B
    Physiol Meas; 2011 Nov; 32(11):1725-36. PubMed ID: 22027197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A MATLAB toolbox for Granger causal connectivity analysis.
    Seth AK
    J Neurosci Methods; 2010 Feb; 186(2):262-73. PubMed ID: 19961876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality.
    Sato JR; Junior EA; Takahashi DY; de Maria Felix M; Brammer MJ; Morettin PA
    Neuroimage; 2006 May; 31(1):187-96. PubMed ID: 16434214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hemodynamic variability on Granger causality analysis of fMRI.
    Deshpande G; Sathian K; Hu X
    Neuroimage; 2010 Sep; 52(3):884-96. PubMed ID: 20004248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.