These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 23036469)
1. Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation. Liu JJ; Song XR; Wang YW; Zheng AX; Chen GN; Yang HH Anal Chim Acta; 2012 Oct; 749():70-4. PubMed ID: 23036469 [TBL] [Abstract][Full Text] [Related]
2. Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Wang G; Zhu Y; Chen L; Zhang X Biosens Bioelectron; 2015 Jan; 63():552-557. PubMed ID: 25150781 [TBL] [Abstract][Full Text] [Related]
3. A highly sensitive fluorescence turn-on platform with silver nanoparticles aptasening for human platelet-derived growth factor-BB. Wang X; Li W; Li Z; Li H; Xu D Talanta; 2015 Nov; 144():1273-8. PubMed ID: 26452958 [TBL] [Abstract][Full Text] [Related]
4. Fast functionalization of silver decahedral nanoparticles with aptamers for colorimetric detection of human platelet-derived growth factor-BB. Li H; Zhu Y; Dong S; Qiang W; Sun L; Xu D Anal Chim Acta; 2014 Jun; 829():48-53. PubMed ID: 24856402 [TBL] [Abstract][Full Text] [Related]
5. A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe. Chai Y; Tian D; Gu J; Cui H Analyst; 2011 Aug; 136(16):3244-51. PubMed ID: 21655607 [TBL] [Abstract][Full Text] [Related]
6. Aptamer-functionalized silver nanoparticles for scanometric detection of platelet-derived growth factor-BB. Hu H; Li H; Zhao Y; Dong S; Li W; Qiang W; Xu D Anal Chim Acta; 2014 Feb; 812():152-60. PubMed ID: 24491776 [TBL] [Abstract][Full Text] [Related]
7. Silver enhanced ratiometric nanosensor based on two adjustable Fluorescence Resonance Energy Transfer modes for quantitative protein sensing. Li H; Zhao Y; Chen Z; Xu D Biosens Bioelectron; 2017 Jan; 87():428-432. PubMed ID: 27589407 [TBL] [Abstract][Full Text] [Related]
8. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor. Zhang Z; Guo C; Zhang S; He L; Wang M; Peng D; Tian J; Fang S Biosens Bioelectron; 2017 Mar; 89(Pt 2):735-742. PubMed ID: 27865109 [TBL] [Abstract][Full Text] [Related]
9. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Liang J; Wei R; He S; Liu Y; Guo L; Li L Analyst; 2013 Mar; 138(6):1726-32. PubMed ID: 23359871 [TBL] [Abstract][Full Text] [Related]
10. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly. Yin N; Yuan S; Zhang M; Wang J; Li Y; Peng Y; Bai J; Ning B; Liang J; Gao Z Mikrochim Acta; 2019 Nov; 186(12):765. PubMed ID: 31713694 [TBL] [Abstract][Full Text] [Related]
11. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Li J; Zhong X; Zhang H; Le XC; Zhu JJ Anal Chem; 2012 Jun; 84(12):5170-4. PubMed ID: 22607314 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Zhu Y; Hu XC; Shi S; Gao RR; Huang HL; Zhu YY; Lv XY; Yao TM Biosens Bioelectron; 2016 May; 79():205-12. PubMed ID: 26706942 [TBL] [Abstract][Full Text] [Related]
13. Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. He L; Zhang S; Ji H; Wang M; Peng D; Yan F; Fang S; Zhang H; Jia C; Zhang Z Biosens Bioelectron; 2016 May; 79():553-60. PubMed ID: 26749096 [TBL] [Abstract][Full Text] [Related]
14. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Wang X; Jiang A; Hou T; Li H; Li F Biosens Bioelectron; 2015 Aug; 70():324-9. PubMed ID: 25840018 [TBL] [Abstract][Full Text] [Related]
15. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. Xu J; Wei C Biosens Bioelectron; 2017 Jan; 87():422-427. PubMed ID: 27589406 [TBL] [Abstract][Full Text] [Related]
16. Enzyme-free fluorescence aptasensor for amplification detection of human thrombin via target-catalyzed hairpin assembly. Zheng AX; Wang JR; Li J; Song XR; Chen GN; Yang HH Biosens Bioelectron; 2012; 36(1):217-21. PubMed ID: 22560106 [TBL] [Abstract][Full Text] [Related]
17. Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization. Yin J; He X; Wang K; Xu F; Shangguan J; He D; Shi H Anal Chem; 2013 Dec; 85(24):12011-9. PubMed ID: 24266455 [TBL] [Abstract][Full Text] [Related]
18. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters. Hosseini M; Mehrabi F; Ganjali MR; Norouzi P Luminescence; 2016 Nov; 31(7):1339-1343. PubMed ID: 26899385 [TBL] [Abstract][Full Text] [Related]
19. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles. Song Q; Peng M; Wang L; He D; Ouyang J Biosens Bioelectron; 2016 Mar; 77():237-41. PubMed ID: 26409024 [TBL] [Abstract][Full Text] [Related]
20. Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection. Li H; Wang M; Wang C; Li W; Qiang W; Xu D Anal Chem; 2013 May; 85(9):4492-9. PubMed ID: 23531211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]