These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 23036664)
1. A new gene superfamily of pathogen-response (repat) genes in Lepidoptera: classification and expression analysis. Navarro-Cerrillo G; Hernández-Martínez P; Vogel H; Ferré J; Herrero S Comp Biochem Physiol B Biochem Mol Biol; 2013 Jan; 164(1):10-7. PubMed ID: 23036664 [TBL] [Abstract][Full Text] [Related]
2. Functional interactions between members of the REPAT family of insect pathogen-induced proteins. Navarro-Cerrillo G; Ferré J; de Maagd RA; Herrero S Insect Mol Biol; 2012 Jun; 21(3):335-42. PubMed ID: 22404489 [TBL] [Abstract][Full Text] [Related]
3. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. Crava CM; Jakubowska AK; Escriche B; Herrero S; Bel Y PLoS One; 2015; 10(5):e0125991. PubMed ID: 25993013 [TBL] [Abstract][Full Text] [Related]
4. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Herrero S; Ansems M; Van Oers MM; Vlak JM; Bakker PL; de Maagd RA Insect Biochem Mol Biol; 2007 Nov; 37(11):1109-18. PubMed ID: 17916497 [TBL] [Abstract][Full Text] [Related]
5. Genomic structure and promoter analysis of pathogen-induced repat genes from Spodoptera exigua. Hernández-Rodríguez CS; Ferré J; Herrero S Insect Mol Biol; 2009 Feb; 18(1):77-85. PubMed ID: 19076251 [TBL] [Abstract][Full Text] [Related]
6. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. Hernández-Martínez P; Navarro-Cerrillo G; Caccia S; de Maagd RA; Moar WJ; Ferré J; Escriche B; Herrero S PLoS One; 2010 Sep; 5(9):. PubMed ID: 20862260 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of strain of Bacillus thuringiensis subsp. kenyae containing two novel cry1-type toxin genes. Choi JY; Li MS; Shim HJ; Roh JY; Woo SD; Jin BR; Boo KS; Je YH J Microbiol Biotechnol; 2007 Sep; 17(9):1498-503. PubMed ID: 18062228 [TBL] [Abstract][Full Text] [Related]
8. RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Rodríguez-Cabrera L; Trujillo-Bacallao D; Borrás-Hidalgo O; Wright DJ; Ayra-Pardo C Environ Microbiol; 2010 Nov; 12(11):2894-903. PubMed ID: 20545748 [TBL] [Abstract][Full Text] [Related]
9. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Caccia S; Di Lelio I; La Storia A; Marinelli A; Varricchio P; Franzetti E; Banyuls N; Tettamanti G; Casartelli M; Giordana B; Ferré J; Gigliotti S; Ercolini D; Pennacchio F Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9486-91. PubMed ID: 27506800 [TBL] [Abstract][Full Text] [Related]
11. The Spodoptera exigua (Lepidoptera: Noctuidae) ABCC2 Mediates Cry1Ac Cytotoxicity and, in Conjunction with Cadherin, Contributes to Enhance Cry1Ca Toxicity in Sf9 Cells. Ren XL; Jiang WL; Ma YJ; Hu HY; Ma XY; Ma Y; Li GQ J Econ Entomol; 2016 Dec; 109(6):2281-2289. PubMed ID: 27986933 [TBL] [Abstract][Full Text] [Related]
12. Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. Hernández-Martínez P; Ferré J; Escriche B Pest Manag Sci; 2009 Jun; 65(6):645-50. PubMed ID: 19253909 [TBL] [Abstract][Full Text] [Related]
13. Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis Cry1Ca toxin. Qiu L; Fan J; Liu L; Zhang B; Wang X; Lei C; Lin Y; Ma W Sci Rep; 2017 Mar; 7():43964. PubMed ID: 28262736 [TBL] [Abstract][Full Text] [Related]
14. Characterization of native Bacillus thuringiensis strains and selection of an isolate active against Spodoptera frugiperda and Peridroma saucia. Alvarez A; Virla EG; Pera LM; Baigorí MD Biotechnol Lett; 2009 Dec; 31(12):1899-903. PubMed ID: 19693442 [TBL] [Abstract][Full Text] [Related]
15. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
17. The diversity of Bt resistance genes in species of Lepidoptera. Heckel DG; Gahan LJ; Baxter SW; Zhao JZ; Shelton AM; Gould F; Tabashnik BE J Invertebr Pathol; 2007 Jul; 95(3):192-7. PubMed ID: 17482643 [TBL] [Abstract][Full Text] [Related]
19. Competition of Bacillus thuringiensis Cry1 toxins for midgut binding sites: a basis for the development and management of transgenic tropical maize resistant to several stemborers. Rang C; Bergvingson D; Bohorova N; Hoisington D; Frutos R Curr Microbiol; 2004 Jul; 49(1):22-7. PubMed ID: 15297925 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome profiling analysis of the intoxication response in midgut tissue of Agrotis ipsilon larvae to Bacillus thuringiensis Vip3Aa protoxin. Zhang J; Li H; Tan J; Wei P; Yu S; Liu R; Gao J Pestic Biochem Physiol; 2019 Oct; 160():20-29. PubMed ID: 31519254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]