These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 23036664)
21. Transcriptional response of Choristoneura fumiferana to sublethal exposure of Cry1Ab protoxin from Bacillus thuringiensis. Meunier L; Préfontaine G; Van Munster M; Brousseau R; Masson L Insect Mol Biol; 2006 Aug; 15(4):475-83. PubMed ID: 16907834 [TBL] [Abstract][Full Text] [Related]
22. Toxicity of Bacillus thuringiensis delta-endotoxins against bean shoot borer (Epinotia aporema Wals.) larvae, a major soybean pest in Argentina. Sauka DH; Sánchez J; Bravo A; Benintende GB J Invertebr Pathol; 2007 Feb; 94(2):125-9. PubMed ID: 17069845 [TBL] [Abstract][Full Text] [Related]
23. Midgut de novo transcriptome analysis and gene expression profiling of Ren X; Wang Y; Ma Y; Jiang W; Ma X; Hu H; Wang D; Ma Y 3 Biotech; 2020 Mar; 10(3):138. PubMed ID: 32158634 [No Abstract] [Full Text] [Related]
24. Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. Karlova R; Weemen-Hendriks M; Naimov S; Ceron J; Dukiandjiev S; de Maagd RA J Invertebr Pathol; 2005 Feb; 88(2):169-72. PubMed ID: 15766934 [TBL] [Abstract][Full Text] [Related]
25. SfREPAT38, a pathogen response gene (REPAT), is involved in immune response of Spodoptera frugiperda larvae through mediating Toll signalling pathway. Wang Y; Mbiza NIT; Liu T; Wang Y; Zhang Y; Luo X; Chu L; Li J; Yang Y; Wang X; Zhang J; Yu Y Insect Mol Biol; 2024 Aug; 33(4):417-426. PubMed ID: 38549231 [TBL] [Abstract][Full Text] [Related]
26. Comprehensive analysis of gene expression profiles of the beet armyworm Spodoptera exigua larvae challenged with Bacillus thuringiensis Vip3Aa toxin. Bel Y; Jakubowska AK; Costa J; Herrero S; Escriche B PLoS One; 2013; 8(12):e81927. PubMed ID: 24312604 [TBL] [Abstract][Full Text] [Related]
27. Toxicity and receptor binding properties of a Bacillus thuringiensis CryIC toxin active against both lepidoptera and diptera. Abdul-Rauf M; Ellar DJ J Invertebr Pathol; 1999 Jan; 73(1):52-8. PubMed ID: 9878290 [TBL] [Abstract][Full Text] [Related]
28. Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). Aranda E; Sanchez J; Peferoen M; Güereca L; Bravo A J Invertebr Pathol; 1996 Nov; 68(3):203-12. PubMed ID: 8931361 [TBL] [Abstract][Full Text] [Related]
29. [Cytopathological effect of Bacillus thuringiensis israelensis endotoxins on the intestines of Aedes aegypti mosquito larvae]. Zalunin IA; Chaĭka SIu; Dronina MA; Revina LP Parazitologiia; 2002; 36(5):337-44. PubMed ID: 12481602 [TBL] [Abstract][Full Text] [Related]
30. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella. Mahbubur Rahman M; Roberts HL; Schmidt O J Invertebr Pathol; 2007 Oct; 96(2):125-32. PubMed ID: 17499761 [TBL] [Abstract][Full Text] [Related]
31. Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Yue C; Sun M; Yu Z Biotechnol Bioeng; 2005 Aug; 91(3):296-303. PubMed ID: 15984034 [TBL] [Abstract][Full Text] [Related]
32. The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. Bradley D; Harkey MA; Kim MK; Biever KD; Bauer LS J Invertebr Pathol; 1995 Mar; 65(2):162-73. PubMed ID: 7722342 [TBL] [Abstract][Full Text] [Related]
33. The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Pascual L; Jakubowska AK; Blanca JM; Cañizares J; Ferré J; Gloeckner G; Vogel H; Herrero S Insect Biochem Mol Biol; 2012 Aug; 42(8):557-70. PubMed ID: 22564783 [TBL] [Abstract][Full Text] [Related]
34. Cloning and characterization of truncated cry1Ab gene from a new indigenous isolate of Bacillus thuringiensis. Darsi S; Divya Prakash G; Udayasuriyan V Biotechnol Lett; 2010 Sep; 32(9):1311-5. PubMed ID: 20480206 [TBL] [Abstract][Full Text] [Related]
35. Identification of four caspase genes from Spodoptera exigua (Lepidoptera: Noctuidae) and their regulations toward different apoptotic stimulations. Yu H; Li ZQ; Ou-Yang YY; Huang GH Insect Sci; 2020 Dec; 27(6):1158-1172. PubMed ID: 31793737 [TBL] [Abstract][Full Text] [Related]
36. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts. Oppert B; Martynov AG; Elpidina EN Comp Biochem Physiol Part D Genomics Proteomics; 2012 Sep; 7(3):233-42. PubMed ID: 22640634 [TBL] [Abstract][Full Text] [Related]
37. Activity of wild-type and hybrid Bacillus thuringiensis delta-endotoxins against Agrotis ipsilon. de Maagd RA; Weemen-Hendriks M; Molthoff JW; Naimov S Arch Microbiol; 2003 May; 179(5):363-7. PubMed ID: 12677360 [TBL] [Abstract][Full Text] [Related]
38. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis. Gao Y; Hu Y; Fu Q; Zhang J; Oppert B; Lai F; Peng Y; Zhang Z J Invertebr Pathol; 2010 Sep; 105(1):11-5. PubMed ID: 20452358 [TBL] [Abstract][Full Text] [Related]
39. Susceptibility of Manduca sexta to Cry1Ab toxin of Bacillus thuringiensis correlates directly to developmental expression of the cadherin receptor BT-R(1). Griko N; Zhang X; Ibrahim M; Midboe EG; Bulla LA Comp Biochem Physiol B Biochem Mol Biol; 2008 Sep; 151(1):59-63. PubMed ID: 18582591 [TBL] [Abstract][Full Text] [Related]
40. Gasmin (BV2-5), a polydnaviral-acquired gene in Spodoptera exigua. Trade-off in the defense against bacterial and viral infections. Gasmi L; Jakubowska AK; Herrero S Dev Comp Immunol; 2016 Mar; 56():37-45. PubMed ID: 26658027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]