These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23036939)

  • 1. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns.
    Kurra N; Bhadram VS; Narayana C; Kulkarni GU
    Nanotechnology; 2012 Oct; 23(42):425301. PubMed ID: 23036939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-effect transistors based on thermally treated electron beam-induced carbonaceous patterns.
    Kurra N; Bhadram VS; Narayana C; Kulkarni GU
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1030-6. PubMed ID: 22239561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis.
    Joung D; Chunder A; Zhai L; Khondaker SI
    Nanotechnology; 2010 Apr; 21(16):165202. PubMed ID: 20348593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors.
    Liu W; Jackson BL; Zhu J; Miao CQ; Chung CH; Park YJ; Sun K; Woo J; Xie YH
    ACS Nano; 2010 Jul; 4(7):3927-32. PubMed ID: 20536162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.
    Ramón ME; Gupta A; Corbet C; Ferrer DA; Movva HC; Carpenter G; Colombo L; Bourianoff G; Doczy M; Akinwande D; Tutuc E; Banerjee SK
    ACS Nano; 2011 Sep; 5(9):7198-204. PubMed ID: 21800895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition.
    Chan J; Venugopal A; Pirkle A; McDonnell S; Hinojos D; Magnuson CW; Ruoff RS; Colombo L; Wallace RM; Vogel EM
    ACS Nano; 2012 Apr; 6(4):3224-9. PubMed ID: 22390298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid-thermal-annealing surface treatment for restoring the intrinsic properties of graphene field-effect transistors.
    Jang CW; Kim JH; Kim JM; Shin DH; Kim S; Choi SH
    Nanotechnology; 2013 Oct; 24(40):405301. PubMed ID: 24029636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-aligned fabrication of graphene RF transistors with T-shaped gate.
    Badmaev A; Che Y; Li Z; Wang C; Zhou C
    ACS Nano; 2012 Apr; 6(4):3371-6. PubMed ID: 22404336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD.
    Kato T; Hatakeyama R
    ACS Nano; 2012 Oct; 6(10):8508-15. PubMed ID: 22971147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography.
    Kim YS; Joo K; Jerng SK; Lee JH; Yoon E; Chun SH
    Nanoscale; 2014 Sep; 6(17):10100-5. PubMed ID: 25034505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polaron coupling in graphene field effect transistors on patterned self-assembled monolayer.
    Yokota K; Takai K; Kudo Y; Sato Y; Enoki T
    Phys Chem Chem Phys; 2014 Mar; 16(9):4313-9. PubMed ID: 24452397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy.
    Xu H; Chen Y; Zhang J; Zhang H
    Small; 2012 Sep; 8(18):2833-40. PubMed ID: 22678822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned growth of graphene over epitaxial catalyst.
    Ago H; Tanaka I; Orofeo CM; Tsuji M; Ikeda K
    Small; 2010 Jun; 6(11):1226-33. PubMed ID: 20486221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of flexible graphene FETs by sunlight reduction of graphene oxide.
    Ma JN; He Y; Liu Y; Han DD; Liu YQ; Mao JW; Jiang HB; Zhang YL
    Opt Lett; 2017 Sep; 42(17):3403-3406. PubMed ID: 28957048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors.
    Yin Z; He Q; Huang X; Zhang J; Wu S; Chen P; Lu G; Chen P; Zhang Q; Yan Q; Zhang H
    Nanoscale; 2012 Jan; 4(1):293-7. PubMed ID: 22089471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer printing of CVD graphene FETs on patterned substrates.
    Abhilash TS; De Alba R; Zhelev N; Craighead HG; Parpia JM
    Nanoscale; 2015 Sep; 7(33):14109-13. PubMed ID: 26242482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.
    Kim HH; Kang B; Suk JW; Li N; Kim KS; Ruoff RS; Lee WH; Cho K
    ACS Nano; 2015 May; 9(5):4726-33. PubMed ID: 25809112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors.
    Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H
    Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage.
    Xu H; Zhang Z; Xu H; Wang Z; Wang S; Peng LM
    ACS Nano; 2011 Jun; 5(6):5031-7. PubMed ID: 21528892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of graphene/SiO2 interface by UV-irradiation: effect on electrical characteristics.
    Imamura G; Saiki K
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2439-43. PubMed ID: 25569142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.