These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23036945)

  • 21. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets?
    Christie GW; Barratt-Boyes BG
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S195-9. PubMed ID: 7646158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.
    Murdock K; Martin C; Sun W
    J Mech Behav Biomed Mater; 2018 Jan; 77():148-156. PubMed ID: 28915471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Method to Quantify Tensile Biaxial Properties of Mouse Aortic Valve Leaflets.
    Chaparro D; Dargam V; Alvarez P; Yeung J; Saytashev I; Bustillo J; Loganathan A; Ramella-Roman J; Agarwal A; Hutcheson JD
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32291440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp--Part I: Experimental results.
    Billiar KL; Sacks MS
    J Biomech Eng; 2000 Feb; 122(1):23-30. PubMed ID: 10790826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association of Collagen, Elastin, Glycosaminoglycans, and Macrophages With Tissue Ultimate Material Strength and Stretch in Human Thoracic Aortic Aneurysms: A Uniaxial Tension Study.
    Tokgoz A; Wang S; Sastry P; Sun C; Figg NL; Huang Y; Bennett MR; Sinha S; Gillard JH; Sutcliffe MPF; Teng Z
    J Biomech Eng; 2022 Oct; 144(10):. PubMed ID: 35274123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The glutaraldehyde-stabilized porcine aortic valve xenograft. II. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material.
    Lee JM; Boughner DR; Courtman DW
    J Biomed Mater Res; 1984 Jan; 18(1):79-98. PubMed ID: 6421823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the biaxial mechanical properties of the layers of the aortic valve leaflet.
    Stella JA; Sacks MS
    J Biomech Eng; 2007 Oct; 129(5):757-66. PubMed ID: 17887902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of glycosaminoglycan degradation on the mechanical behavior of the posterior porcine sclera.
    Murienne BJ; Jefferys JL; Quigley HA; Nguyen TD
    Acta Biomater; 2015 Jan; 12():195-206. PubMed ID: 25448352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycosaminoglycan-degrading enzymes in porcine aortic heart valves: implications for bioprosthetic heart valve degeneration.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):217-25. PubMed ID: 12701795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An investigation of layer-specific tissue biomechanics of porcine atrioventricular valve anterior leaflets.
    Kramer KE; Ross CJ; Laurence DW; Babu AR; Wu Y; Towner RA; Mir A; Burkhart HM; Holzapfel GA; Lee CH
    Acta Biomater; 2019 Sep; 96():368-384. PubMed ID: 31260822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonhomogeneous deformation in the anterior leaflet of the mitral valve.
    Chen L; McCulloch AD; May-Newman K
    Ann Biomed Eng; 2004 Dec; 32(12):1599-606. PubMed ID: 15675673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation.
    Anssari-Benam A; Bader DL; Screen HR
    J Mater Sci Mater Med; 2011 Feb; 22(2):253-62. PubMed ID: 21221737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of elastin in aortic valve mechanics.
    Vesely I
    J Biomech; 1998 Feb; 31(2):115-23. PubMed ID: 9593204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.
    Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC
    Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets.
    Aggarwal A; Pouch AM; Lai E; Lesicko J; Yushkevich PA; Gorman Iii JH; Gorman RC; Sacks MS
    J Biomech; 2016 Aug; 49(12):2481-90. PubMed ID: 27207385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of orientation and targeted extracellular matrix degradation on the shear mechanical properties of the annulus fibrosus.
    Jacobs NT; Smith LJ; Han WM; Morelli J; Yoder JH; Elliott DM
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1611-9. PubMed ID: 22098863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements.
    Vesely I; Boughner D
    J Biomech; 1989; 22(6-7):655-71. PubMed ID: 2509479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading.
    Huang HY; Liao J; Sacks MS
    J Biomech Eng; 2007 Dec; 129(6):880-89. PubMed ID: 18067392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium.
    Sulejmani F; Caballero A; Martin C; Pham T; Sun W
    J Mech Behav Biomed Mater; 2019 Sep; 97():159-170. PubMed ID: 31125889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.