BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23037208)

  • 1. Impact of sub-pixel variations on ocean color remote sensing products.
    Lee Z; Hu C; Arnone R; Liu Z
    Opt Express; 2012 Sep; 20(19):20844-54. PubMed ID: 23037208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.
    Zeng C; Xu H; Fischer AM
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Raman scattering on ocean color inversion models.
    Westberry TK; Boss E; Lee Z
    Appl Opt; 2013 Aug; 52(22):5552-61. PubMed ID: 23913078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past.
    Hu C; Feng L; Lee Z; Davis CO; Mannino A; McClain CR; Franz BA
    Appl Opt; 2012 Sep; 51(25):6045-62. PubMed ID: 22945151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.
    Lee Z; Shang S; Hu C; Zibordi G
    Appl Opt; 2014 May; 53(15):3301-10. PubMed ID: 24922219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI).
    Sathyendranath S; Brewin RJW; Brockmann C; Brotas V; Calton B; Chuprin A; Cipollini P; Couto AB; Dingle J; Doerffer R; Donlon C; Dowell M; Farman A; Grant M; Groom S; Horseman A; Jackson T; Krasemann H; Lavender S; Martinez-Vicente V; Mazeran C; Mélin F; Moore TS; Müller D; Regner P; Roy S; Steele CJ; Steinmetz F; Swinton J; Taberner M; Thompson A; Valente A; Zühlke M; Brando VE; Feng H; Feldman G; Franz BA; Frouin R; Gould RW; Hooker SB; Kahru M; Kratzer S; Mitchell BG; Muller-Karger FE; Sosik HM; Voss KJ; Werdell J; Platt T
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI).
    Wang M; Ahn JH; Jiang L; Shi W; Son S; Park YJ; Ryu JH
    Opt Express; 2013 Feb; 21(3):3835-49. PubMed ID: 23481840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A decade of satellite ocean color observations.
    McClain CR
    Ann Rev Mar Sci; 2009; 1():19-42. PubMed ID: 21141028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning.
    Kolluru S; Tiwari SP
    Sci Total Environ; 2022 Oct; 844():157191. PubMed ID: 35810889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Using in-situ reflectance to monitor the chlorophyll concentration in the surface layer of tidal flat].
    Xing QG; Yu DF; Lou MJ; Lü YC; Li SP; Han QY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2188-91. PubMed ID: 24159873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the non-closure of particle backscattering coefficient in oligotrophic oceans.
    Lee Z; Huot Y
    Opt Express; 2014 Nov; 22(23):29223-33. PubMed ID: 25402161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia.
    Dupouy C; Neveux J; Ouillon S; Frouin R; Murakami H; Hochard S; Dirberg G
    Mar Pollut Bull; 2010; 61(7-12):503-18. PubMed ID: 20688344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Remote sensing inversion mode of suspended particles concentration in Hangzhou Bay based on in situ measurement spectrum].
    Wang F; Zhou B; Xu JM; Ling ZY
    Huan Jing Ke Xue; 2008 Nov; 29(11):3022-6. PubMed ID: 19186796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deriving consistent ocean biological and biogeochemical products from multiple satellite ocean color sensors.
    Wang M; Jiang L; Son S; Liu X; Voss KJ
    Opt Express; 2020 Feb; 28(3):2661-2682. PubMed ID: 32121950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.
    Renosh PR; Schmitt FG; Loisel H
    PLoS One; 2015; 10(5):e0126975. PubMed ID: 26017551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote sensing of the nearshore.
    Holman R; Haller MC
    Ann Rev Mar Sci; 2013; 5():95-113. PubMed ID: 22809186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of remote sensing reflectance from above-water and in-water measurements west of Greenland, Labrador Sea, Denmark Strait, and west of Iceland.
    Garaba SP; Zielinski O
    Opt Express; 2013 Jul; 21(13):15938-50. PubMed ID: 23842380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions.
    Chang CH; Liu CC; Chung HW; Lee LJ; Yang WC
    Appl Opt; 2014 Feb; 53(4):605-17. PubMed ID: 24514177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.