These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23037214)

  • 21. Plasmon-induced transparency in a single multimode stub resonator.
    Cao G; Li H; Deng Y; Zhan S; He Z; Li B
    Opt Express; 2014 Oct; 22(21):25215-23. PubMed ID: 25401555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable band-pass plasmonic waveguide filters with nanodisk resonators.
    Lu H; Liu X; Mao D; Wang L; Gong Y
    Opt Express; 2010 Aug; 18(17):17922-7. PubMed ID: 20721178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.
    Zhang Z; Yang J; He X; Han Y; Zhang J; Huang J; Chen D; Xu S
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupled wave analysis of holographically induced transparency (HIT) generated by two multiplexed volume gratings.
    Carretero L; Blaya S; Acebal P; Fimia A; Madrigal R; Murciano A
    Opt Express; 2011 Apr; 19(8):7094-105. PubMed ID: 21503022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator.
    Piao X; Yu S; Park N
    Opt Express; 2012 Aug; 20(17):18994-9. PubMed ID: 23038539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wideband slow light with low dispersion in asymmetric slotted photonic crystal waveguides.
    Liu B; Wang T; Tang J; Li X; Dong C; He Y
    Appl Opt; 2013 Dec; 52(34):8394-401. PubMed ID: 24513844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of an ultra-compact wavelength filter based on hybrid plasmonic waveguide structure.
    Zhu N; Mei T
    Opt Lett; 2012 May; 37(10):1751-3. PubMed ID: 22627559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes.
    Meng B; Wang LL; Huang WQ; Li XF; Zhai X; Zhang H
    Appl Opt; 2012 Aug; 51(23):5735-42. PubMed ID: 22885588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Double Electromagnetically Induced Transparency and Its Slow Light Application Based On a Guided-Mode Resonance Grating Cascade Structure.
    Li G; Yang J; Zhang Z; Tao Y; Zhou L; Huang H; Zhang Z; Han Y
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broadband dispersionless topological slow light.
    Chen J; Liang W; Li ZY
    Opt Lett; 2020 Sep; 45(18):4964-4967. PubMed ID: 32932428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency.
    Yanik MF; Suh W; Wang Z; Fan S
    Phys Rev Lett; 2004 Dec; 93(23):233903. PubMed ID: 15601162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slow light with large group index-bandwidth product in ellipse-hole photonic crystal waveguides.
    Han X; Wang T; Tang J; Liu B; Wang B; He Y; Zhu Y
    Appl Opt; 2015 Feb; 54(6):1543-7. PubMed ID: 25968223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity.
    Liu SD; Yang Z; Liu RP; Li XY
    Opt Express; 2011 Aug; 19(16):15363-70. PubMed ID: 21934898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale all-optical plasmonic switching using electromagnetically induced transparency.
    Rostami G; Shahabadi M; Afzali Kusha A; Rostami A
    Appl Opt; 2012 Jul; 51(21):5019-27. PubMed ID: 22858940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling.
    Zhang C; Bai R; Gu X; Jin XR; Zhang YQ; Lee Y
    Opt Express; 2017 Oct; 25(20):24281-24289. PubMed ID: 29041373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flat band slow light in asymmetric photonic crystal waveguide based on microfluidic infiltration.
    Lü S; Zhao J; Zhang D
    Appl Opt; 2010 Jul; 49(20):3930-4. PubMed ID: 20648169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-uniformity multichannel plasmonic filter using linearly lengthened insulators in metal-insulator-metal waveguide.
    Luo X; Zou X; Li X; Zhou Z; Pan W; Yan L; Wen K
    Opt Lett; 2013 May; 38(9):1585-7. PubMed ID: 23632560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime.
    Wang G; Lu H; Liu X; Mao D; Duan L
    Opt Express; 2011 Feb; 19(4):3513-8. PubMed ID: 21369174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators.
    Wang T; Zhang Y; Hong Z; Han Z
    Opt Express; 2014 Sep; 22(18):21529-34. PubMed ID: 25321531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.