These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23037280)

  • 1. Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals.
    Chen Z; Han P; Leung CW; Wang Y; Hu M; Chen Y
    Opt Express; 2012 Sep; 20(19):21618-26. PubMed ID: 23037280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect absorber supported by optical Tamm states in plasmonic waveguide.
    Gong Y; Liu X; Lu H; Wang L; Wang G
    Opt Express; 2011 Sep; 19(19):18393-8. PubMed ID: 21935207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of interference between two optical beams in a quasi-zero electric permittivity photonic crystal superlattice.
    Li Z; Hattori HT
    Appl Opt; 2013 Feb; 52(4):854-61. PubMed ID: 23385928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Tamm states in one-dimensional magnetophotonic structures.
    Goto T; Dorofeenko AV; Merzlikin AM; Baryshev AV; Vinogradov AP; Inoue M; Lisyansky AA; Granovsky AB
    Phys Rev Lett; 2008 Sep; 101(11):113902. PubMed ID: 18851281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of one-dimensional photonic crystals containing single-negative materials.
    Jiang H; Chen H; Li H; Zhang Y; Zi J; Zhu S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066607. PubMed ID: 15244764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Degenerate Band Gaps in Layered Systems.
    Ignatov AI; Merzlikin AM; Levy M; Vinogradov AP
    Materials (Basel); 2012 Jun; 5(6):1055-1083. PubMed ID: 28817024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental measurement of the photonic properties of icosahedral quasicrystals.
    Man W; Megens M; Steinhardt PJ; Chaikin PM
    Nature; 2005 Aug; 436(7053):993-6. PubMed ID: 16107842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects induced by Mie resonance in two-dimensional photonic crystals.
    Shi L; Jiang X; Li C
    J Phys Condens Matter; 2007 Apr; 19(17):176214. PubMed ID: 21690959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure.
    Kubo S; Gu ZZ; Takahashi K; Fujishima A; Segawa H; Sato O
    J Am Chem Soc; 2004 Jul; 126(26):8314-9. PubMed ID: 15225074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies.
    Kocaman S; Chatterjee R; Panoiu NC; McMillan JF; Yu MB; Osgood RM; Kwong DL; Wong CW
    Phys Rev Lett; 2009 May; 102(20):203905. PubMed ID: 19519031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.
    Stimulak M; Ravnik M
    Soft Matter; 2014 Sep; 10(33):6339-46. PubMed ID: 25034860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of two-dimensional negative-phase-velocity-medium photonic crystals.
    Zeng Y; Fu Y; Chen X; Lu W; Agren H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066625. PubMed ID: 16907015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of self-collimated fields in photonic crystals consisting of two kinds of single-negative materials.
    Wang ZL; Jiang HT; Li YH; Chen H
    Opt Express; 2010 Jul; 18(14):14311-8. PubMed ID: 20639915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.
    Kushwaha MS; Martinez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically controlled optical Tamm states in magnetophotonic crystal based on nematic liquid crystals.
    Da HX; Huang ZQ; Li ZY
    Opt Lett; 2009 Jun; 34(11):1693-5. PubMed ID: 19488151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-way optical tunneling induced by nonreciprocal dispersion of Tamm states in magnetophotonic crystals.
    Dong HY; Wang J; Fung KH
    Opt Lett; 2013 Dec; 38(24):5232-5. PubMed ID: 24322225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast.
    Chern RL; Chao SD
    Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.