These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 23037410)

  • 21. Raman concentrators in Ge nanowires with dielectric coatings.
    Hyun JK; Kim IS; Connell JG; Lauhon LJ
    Opt Express; 2012 Feb; 20(5):5127-32. PubMed ID: 22418318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled formation and resistivity scaling of nickel silicide nanolines.
    Li B; Luo Z; Shi L; Zhou J; Rabenberg L; Ho PS; Allen RA; Cresswell MW
    Nanotechnology; 2009 Feb; 20(8):085304. PubMed ID: 19417448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.
    Luo S; Zhou W; Chu W; Shen J; Zhang Z; Liu L; Liu D; Xiang Y; Ma W; Xie S
    Small; 2007 Mar; 3(3):444-50. PubMed ID: 17278164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires.
    Thangala J; Vaddiraju S; Bogale R; Thurman R; Powers T; Deb B; Sunkara MK
    Small; 2007 May; 3(5):890-6. PubMed ID: 17415736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanocrystals: shedding new light on silicon.
    Gösele U
    Nat Nanotechnol; 2008 Mar; 3(3):134-5. PubMed ID: 18654483
    [No Abstract]   [Full Text] [Related]  

  • 26. Si nanorod length dependent surface Raman scattering linewidth broadening and peak shift.
    Lin GR; Lin YH; Pai YH; Meng FS
    Opt Express; 2011 Jan; 19(2):597-605. PubMed ID: 21263599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersion characteristics of silicon nanorod based carpet cloaks.
    Tamma VA; Blair J; Summers CJ; Park W
    Opt Express; 2010 Dec; 18(25):25746-56. PubMed ID: 21164920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large longitudinal electric fields (Ez) in silicon nanowire waveguides.
    Driscoll JB; Liu X; Yasseri S; Hsieh I; Dadap JI; Osgood RM
    Opt Express; 2009 Feb; 17(4):2797-804. PubMed ID: 19219184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Kerr Nonlinearity and Nonlinear Figure of Merit in Silicon Nanowires Integrated with 2D Graphene Oxide Films.
    Zhang Y; Wu J; Yang Y; Qu Y; Jia L; Moein T; Jia B; Moss DJ
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33094-33103. PubMed ID: 32597629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Negligible nonlinear absorption in hydrogenated amorphous silicon at 1.55 μm for ultra-fast nonlinear signal processing.
    Gai X; Choi DY; Luther-Davies B
    Opt Express; 2014 Apr; 22(8):9948-58. PubMed ID: 24787877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silica nanorod-array films with very low refractive indices.
    Xi JQ; Kim JK; Schubert EF
    Nano Lett; 2005 Jul; 5(7):1385-7. PubMed ID: 16178243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime.
    Shen L; Healy N; Mehta P; Day TD; Sparks JR; Badding JV; Peacock AC
    Opt Express; 2013 Jun; 21(11):13075-83. PubMed ID: 23736561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers.
    Lee JH; Tanemura T; Kikuchi K; Nagashima T; Hasegawa T; Ohara S; Sugimoto N
    Opt Lett; 2005 Jul; 30(13):1698-700. PubMed ID: 16075542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo simulation of the hysteresis phenomena on ferromagnetic nanotubes.
    Salazar-Enríquez CD; Restrepo J; Restrepo-Parra E
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4697-702. PubMed ID: 22905518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator.
    Lu X; Lee JY; Rogers S; Lin Q
    Opt Express; 2014 Dec; 22(25):30826-32. PubMed ID: 25607031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear 1/f noise in amorphous silicon.
    Parman C; Kakalios J
    Phys Rev Lett; 1991 Oct; 67(18):2529-2532. PubMed ID: 10044449
    [No Abstract]   [Full Text] [Related]  

  • 37. Molecular-dynamics simulations of the stability of amorphous silicon.
    Kwon I; Biswas R; Soukoulis CM
    Phys Rev B Condens Matter; 1991 Jan; 43(2):1859-1862. PubMed ID: 9997451
    [No Abstract]   [Full Text] [Related]  

  • 38. Intense small wave-vector scattering from voids in amorphous silicon: A theoretical simulation.
    Biswas R; Kwon I; Bouchard AM; Soukoulis CM; Grest GS
    Phys Rev B Condens Matter; 1989 Mar; 39(8):5101-5106. PubMed ID: 9948898
    [No Abstract]   [Full Text] [Related]  

  • 39. Optical dispersion relations in two types of amorphous silicon using Adachi's expression.
    Fried M; van Silfhout A
    Phys Rev B Condens Matter; 1994 Feb; 49(8):5699-5702. PubMed ID: 10011531
    [No Abstract]   [Full Text] [Related]  

  • 40. Light-enhanced deep deuterium emission and the diffusion mechanism in amorphous silicon.
    Branz HM; Asher SE; Nelson BP
    Phys Rev B Condens Matter; 1993 Mar; 47(12):7061-7066. PubMed ID: 10004701
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.