These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 23037541)

  • 1. Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode.
    Lee E; Kim C
    Opt Express; 2012 Sep; 20 Suppl 5():A740-53. PubMed ID: 23037541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical and electrical study of organic solar cells with a 2D grating anode.
    Sha WE; Choy WC; Wu Y; Chew WC
    Opt Express; 2012 Jan; 20(3):2572-80. PubMed ID: 22330495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Investigation on performance enhancement of bulk heterojunction organic solar cells].
    Su MC; Yi LX; Wang Y; Shi YM; Liang CJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):740-4. PubMed ID: 18619287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of gold quantum dots/grating-coupled surface plasmons in inverted organic solar cells.
    Kuntamung K; Yaiwong P; Lertvachirapaiboon C; Ishikawa R; Shinbo K; Kato K; Ounnunkad K; Baba A
    R Soc Open Sci; 2021 Mar; 8(3):210022. PubMed ID: 33959372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.
    In S; Park N
    Sci Rep; 2016 Feb; 6():21784. PubMed ID: 26902974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics.
    Bai W; Gan Q; Song G; Chen L; Kafafi Z; Bartoli F
    Opt Express; 2010 Nov; 18 Suppl 4():A620-30. PubMed ID: 21165095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface.
    Chen L; Zhang Q; Lei Y; Zhu F; Wu B; Zhang T; Niu G; Xiong Z; Song Q
    Phys Chem Chem Phys; 2013 Oct; 15(39):16891-7. PubMed ID: 24002235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergetic light trapping effects in organic solar cells with a patterned semi-transparent electrode.
    Ren H; Ren X; Huang Z; Wu X
    Phys Chem Chem Phys; 2019 Jun; 21(21):11306-11312. PubMed ID: 31106313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers.
    Cai Y; Li Q; Lu G; Ryu HS; Li Y; Jin H; Chen Z; Tang Z; Lu G; Hao X; Woo HY; Zhang C; Sun Y
    Nat Commun; 2022 May; 13(1):2369. PubMed ID: 35501300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells.
    Baba A; Aoki N; Shinbo K; Kato K; Kaneko F
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2080-4. PubMed ID: 21591626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disodium edetate as a promising interfacial material for inverted organic solar cells and the device performance optimization.
    Li X; Zhang W; Wang X; Gao F; Fang J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20569-73. PubMed ID: 25402413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage.
    Khlyabich PP; Burkhart B; Thompson BC
    J Am Chem Soc; 2011 Sep; 133(37):14534-7. PubMed ID: 21854034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization.
    Chen YH; Lin LY; Lu CW; Lin F; Huang ZY; Lin HW; Wang PH; Liu YH; Wong KT; Wen J; Miller DJ; Darling SB
    J Am Chem Soc; 2012 Aug; 134(33):13616-23. PubMed ID: 22831172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocurrent generation in nanostructured organic solar cells.
    Yang F; Forrest SR
    ACS Nano; 2008 May; 2(5):1022-32. PubMed ID: 19206500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light harvesting improvement of organic solar cells with self-enhanced active layer designs.
    Chen L; Sha WE; Choy WC
    Opt Express; 2012 Mar; 20(7):8175-85. PubMed ID: 22453487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells.
    Zhao W; Li S; Yao H; Zhang S; Zhang Y; Yang B; Hou J
    J Am Chem Soc; 2017 May; 139(21):7148-7151. PubMed ID: 28513158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers.
    Khlyabich PP; Burkhart B; Thompson BC
    J Am Chem Soc; 2012 Jun; 134(22):9074-7. PubMed ID: 22587584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.