BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23037553)

  • 21. A Dirichlet process model for classifying and forecasting epidemic curves.
    Nsoesie EO; Leman SC; Marathe MV
    BMC Infect Dis; 2014 Jan; 14():12. PubMed ID: 24405642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using web search queries to monitor influenza-like illness: an exploratory retrospective analysis, Netherlands, 2017/18 influenza season.
    Schneider PP; van Gool CJ; Spreeuwenberg P; Hooiveld M; Donker GA; Barnett DJ; Paget J
    Euro Surveill; 2020 May; 25(21):. PubMed ID: 32489174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Using Google Trends to estimate the incidence of influenza-like illness in Argentina].
    Orellano PW; Reynoso JI; Antman J; Argibay O
    Cad Saude Publica; 2015 Apr; 31(4):691-700. PubMed ID: 25945979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Google Trends-based non-English language query data and epidemic diseases: a cross-sectional study of the popular search behaviour in Taiwan.
    Chang YW; Chiang WL; Wang WH; Lin CY; Hung LC; Tsai YC; Suen JL; Chen YH
    BMJ Open; 2020 Jul; 10(7):e034156. PubMed ID: 32624467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Web-based surveillance of respiratory infection outbreaks: retrospective analysis of Italian COVID-19 epidemic waves using Google Trends.
    Porcu G; Chen YX; Bonaugurio AS; Villa S; Riva L; Messina V; Bagarella G; Maistrello M; Leoni O; Cereda D; Matone F; Gori A; Corrao G
    Front Public Health; 2023; 11():1141688. PubMed ID: 37275497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Web and social media for influenza surveillance.
    Corley CD; Cook DJ; Mikler AR; Singh KP
    Adv Exp Med Biol; 2010; 680():559-64. PubMed ID: 20865540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data.
    Zhang Y; Yakob L; Bonsall MB; Hu W
    Sci Rep; 2019 Mar; 9(1):3262. PubMed ID: 30824756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using search engine big data for predicting new HIV diagnoses.
    Young SD; Zhang Q
    PLoS One; 2018; 13(7):e0199527. PubMed ID: 30001360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation between Google Trends on dengue fever and national surveillance report in Indonesia.
    Husnayain A; Fuad A; Lazuardi L
    Glob Health Action; 2019; 12(1):1552652. PubMed ID: 31154985
    [No Abstract]   [Full Text] [Related]  

  • 30. Can syndromic thresholds provide early warning of national influenza outbreaks?
    Cooper DL; Verlander NQ; Elliot AJ; Joseph CA; Smith GE
    J Public Health (Oxf); 2009 Mar; 31(1):17-25. PubMed ID: 18032426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use Internet search data to accurately track state level influenza epidemics.
    Yang S; Ning S; Kou SC
    Sci Rep; 2021 Feb; 11(1):4023. PubMed ID: 33597556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time.
    McIver DJ; Brownstein JS
    PLoS Comput Biol; 2014 Apr; 10(4):e1003581. PubMed ID: 24743682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using networks to combine "big data" and traditional surveillance to improve influenza predictions.
    Davidson MW; Haim DA; Radin JM
    Sci Rep; 2015 Jan; 5():8154. PubMed ID: 25634021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Infodemiology of flu: Google trends-based analysis of Italians' digital behavior and a focus on SARS-CoV-2, Italy.
    Santangelo OE; Provenzano S; Gianfredi V
    J Prev Med Hyg; 2021 Sep; 62(3):E586-E591. PubMed ID: 34909483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data.
    Moss R; Zarebski A; Dawson P; McCaw JM
    Influenza Other Respir Viruses; 2016 Jul; 10(4):314-23. PubMed ID: 26859411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Twitter mining for fine-grained syndromic surveillance.
    Velardi P; Stilo G; Tozzi AE; Gesualdo F
    Artif Intell Med; 2014 Jul; 61(3):153-63. PubMed ID: 24613716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks - results for 2009-10.
    Valdivia A; Lopez-Alcalde J; Vicente M; Pichiule M; Ruiz M; Ordobas M
    Euro Surveill; 2010 Jul; 15(29):. PubMed ID: 20667303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model.
    Dukic V; Lopes HF; Polson NG
    J Am Stat Assoc; 2012; 107(500):1410-1426. PubMed ID: 37583443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influenza Epidemic Trend Surveillance and Prediction Based on Search Engine Data: Deep Learning Model Study.
    Yang L; Zhang T; Han X; Yang J; Sun Y; Ma L; Chen J; Li Y; Lai S; Li W; Feng L; Yang W
    J Med Internet Res; 2023 Oct; 25():e45085. PubMed ID: 37847532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate estimation of influenza epidemics using Google search data via ARGO.
    Yang S; Santillana M; Kou SC
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14473-8. PubMed ID: 26553980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.