These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 23037571)
1. Flexible parametric joint modelling of longitudinal and survival data. Crowther MJ; Abrams KR; Lambert PC Stat Med; 2012 Dec; 31(30):4456-71. PubMed ID: 23037571 [TBL] [Abstract][Full Text] [Related]
2. Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification. Crowther MJ; Andersson TM; Lambert PC; Abrams KR; Humphreys K Stat Med; 2016 Mar; 35(7):1193-209. PubMed ID: 26514596 [TBL] [Abstract][Full Text] [Related]
3. Multilevel mixed effects parametric survival models using adaptive Gauss-Hermite quadrature with application to recurrent events and individual participant data meta-analysis. Crowther MJ; Look MP; Riley RD Stat Med; 2014 Sep; 33(22):3844-58. PubMed ID: 24789760 [TBL] [Abstract][Full Text] [Related]
4. A general framework for parametric survival analysis. Crowther MJ; Lambert PC Stat Med; 2014 Dec; 33(30):5280-97. PubMed ID: 25220693 [TBL] [Abstract][Full Text] [Related]
5. Survival estimation through the cumulative hazard with monotone natural cubic splines using convex optimization-the HCNS approach. Bantis LE; Tsimikas JV; Georgiou SD Comput Methods Programs Biomed; 2020 Jul; 190():105357. PubMed ID: 32036203 [TBL] [Abstract][Full Text] [Related]
6. Choice of baseline hazards in joint modeling of longitudinal and time-to-event cancer survival data. Hari A; Jinto EG; Dennis D; Krishna KMNJ; George PS; Roshni S; Mathew A Stat Appl Genet Mol Biol; 2024 Jan; 23(1):. PubMed ID: 38736398 [TBL] [Abstract][Full Text] [Related]
7. gsem: A Stata command for parametric joint modelling of longitudinal and accelerated failure time models. Yildirim E; Karasoy D Comput Methods Programs Biomed; 2020 Nov; 196():105612. PubMed ID: 32622046 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear association structures in flexible Bayesian additive joint models. Köhler M; Umlauf N; Greven S Stat Med; 2018 Dec; 37(30):4771-4788. PubMed ID: 30306611 [TBL] [Abstract][Full Text] [Related]
9. Estimation of a decreasing hazard of patients with acute coronary syndrome. van Geloven N; Martin I; Damman P; de Winter RJ; Tijssen JG; Lopuhaä HP Stat Med; 2013 Mar; 32(7):1223-38. PubMed ID: 22829475 [TBL] [Abstract][Full Text] [Related]
10. Bayesian regularization for flexible baseline hazard functions in Cox survival models. Lázaro E; Armero C; Alvares D Biom J; 2021 Jan; 63(1):7-26. PubMed ID: 32885493 [TBL] [Abstract][Full Text] [Related]
11. A tractable Bayesian joint model for longitudinal and survival data. Alvares D; Rubio FJ Stat Med; 2021 Aug; 40(19):4213-4229. PubMed ID: 34114254 [TBL] [Abstract][Full Text] [Related]
12. Direct likelihood inference on the cause-specific cumulative incidence function: A flexible parametric regression modelling approach. Mozumder SI; Rutherford M; Lambert P Stat Med; 2018 Jan; 37(1):82-97. PubMed ID: 28971494 [TBL] [Abstract][Full Text] [Related]
13. Analysis of time to event outcomes in randomized controlled trials by generalized additive models. Argyropoulos C; Unruh ML PLoS One; 2015; 10(4):e0123784. PubMed ID: 25906075 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling. Farcomeni A; Viviani S Stat Med; 2015 Mar; 34(7):1199-213. PubMed ID: 25488110 [TBL] [Abstract][Full Text] [Related]
15. Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data. Lavalley-Morelle A; Mentré F; Comets E; Mullaert J Comput Methods Programs Biomed; 2024 Apr; 247():108095. PubMed ID: 38422892 [TBL] [Abstract][Full Text] [Related]
16. A flexible parametric accelerated failure time model and the extension to time-dependent acceleration factors. Crowther MJ; Royston P; Clements M Biostatistics; 2023 Jul; 24(3):811-831. PubMed ID: 35639824 [TBL] [Abstract][Full Text] [Related]
17. Joint model robustness compared with the time-varying covariate Cox model to evaluate the association between a longitudinal marker and a time-to-event endpoint. Arisido MW; Antolini L; Bernasconi DP; Valsecchi MG; Rebora P BMC Med Res Methodol; 2019 Dec; 19(1):222. PubMed ID: 31795933 [TBL] [Abstract][Full Text] [Related]
18. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Elashoff RM; Li G; Li N Biometrics; 2008 Sep; 64(3):762-771. PubMed ID: 18162112 [TBL] [Abstract][Full Text] [Related]
19. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Song X; Davidian M; Tsiatis AA Biometrics; 2002 Dec; 58(4):742-53. PubMed ID: 12495128 [TBL] [Abstract][Full Text] [Related]
20. Joint analysis of longitudinal measurements and survival times with a cure fraction based on partly linear mixed and semiparametric cure models. Yang L; Song H; Peng Y; Tu D Pharm Stat; 2021 Mar; 20(2):362-374. PubMed ID: 33225606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]