These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23038068)

  • 21. A computational mechanics approach to assess the link between cell morphology and forces during confined migration.
    Aubry D; Thiam H; Piel M; Allena R
    Biomech Model Mechanobiol; 2015 Jan; 14(1):143-57. PubMed ID: 24895016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Informatics-based analysis of mechanosignaling in the laminopathies.
    Lai FP; Mutalif RA; Phua SC; Stewart CL
    Methods Cell Biol; 2010; 98():323-35. PubMed ID: 20816240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linkages of nuclear architecture to biological and pathological control of gene expression.
    Stein GS; van Wijnen AJ; Stein JL; Lian JB; Pockwinse SM; McNeil S
    J Cell Biochem Suppl; 1998; 30-31():220-31. PubMed ID: 9893274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.
    Cremer T; Kreth G; Koester H; Fink RH; Heintzmann R; Cremer M; Solovei I; Zink D; Cremer C
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):179-212. PubMed ID: 11186332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading.
    Huang HY; Liao J; Sacks MS
    J Biomech Eng; 2007 Dec; 129(6):880-89. PubMed ID: 18067392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The integration of tissue structure and nuclear function.
    Maxwell CA; Hendzel MJ
    Biochem Cell Biol; 2001; 79(3):267-74. PubMed ID: 11467740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.
    Cao X; Moeendarbary E; Isermann P; Davidson PM; Wang X; Chen MB; Burkart AK; Lammerding J; Kamm RD; Shenoy VB
    Biophys J; 2016 Oct; 111(7):1541-1552. PubMed ID: 27705776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of intracellular strain on deformable substrates with texture correlation.
    Gilchrist CL; Witvoet-Braam SW; Guilak F; Setton LA
    J Biomech; 2007; 40(4):786-94. PubMed ID: 16698026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agarose-based 3D Cell Confinement Assay to Study Nuclear Mechanobiology.
    Elpers MA; Varlet AA; Agrawal R; Lammerding J
    Curr Protoc; 2023 Jul; 3(7):e847. PubMed ID: 37459474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanotopography/mechanical induction of stem-cell differentiation.
    Teo BK; Ankam S; Chan LY; Yim EK
    Methods Cell Biol; 2010; 98():241-94. PubMed ID: 20816238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.
    Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation.
    Zeng Y; Yip AK; Teo SK; Chiam KH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):49-59. PubMed ID: 21308391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation.
    Qin Z; Buehler MJ
    ACS Nano; 2011 Apr; 5(4):3034-42. PubMed ID: 21384869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays.
    Moraes C; Wang G; Sun Y; Simmons CA
    Biomaterials; 2010 Jan; 31(3):577-84. PubMed ID: 19819010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nuclear architecture by RNA.
    Caudron-Herger M; Rippe K
    Curr Opin Genet Dev; 2012 Apr; 22(2):179-87. PubMed ID: 22281031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intranuclear membrane structure formations by CaaX-containing nuclear proteins.
    Ralle T; Grund C; Franke WW; Stick R
    J Cell Sci; 2004 Dec; 117(Pt 25):6095-104. PubMed ID: 15546917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The efficiency of nuclear plasmid DNA delivery is a critical determinant of transgene expression at the single cell level.
    Glover DJ; Leyton DL; Moseley GW; Jans DA
    J Gene Med; 2010 Jan; 12(1):77-85. PubMed ID: 19890943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling Microfluidic Platforms, Microfabrication, and Tissue Engineered Scaffolds to Investigate Tumor Cells Mechanobiology.
    Millet M; Ben Messaoud R; Luthold C; Bordeleau F
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces.
    Guolla L; Bertrand M; Haase K; Pelling AE
    J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The "nuclear physics" behind epigenetic control of cell fate.
    Zijl S; Lomakin AJ
    Exp Cell Res; 2019 Mar; 376(2):236-239. PubMed ID: 30633879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.