BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23038160)

  • 1. Using ecological niche modelling to predict spatial and temporal distribution patterns in Chinese gibbons: lessons from the present and the past.
    Chatterjee HJ; Tse JS; Turvey ST
    Folia Primatol (Basel); 2012; 83(2):85-99. PubMed ID: 23038160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating coalescent and ecological niche modeling in comparative phylogeography.
    Carstens BC; Richards CL
    Evolution; 2007 Jun; 61(6):1439-54. PubMed ID: 17542851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of plant species distributions across six millennia.
    Pearman PB; Randin CF; Broennimann O; Vittoz P; van der Knaap WO; Engler R; Le Lay G; Zimmermann NE; Guisan A
    Ecol Lett; 2008 Apr; 11(4):357-69. PubMed ID: 18279357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking of climatic niche boundaries under recent climate change.
    La Sorte FA; Jetz W
    J Anim Ecol; 2012 Jul; 81(4):914-25. PubMed ID: 22372840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.
    Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD
    Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of climate and land-cover change on the conservation status of gibbons.
    Yang L; Chen T; Shi KC; Zhang L; Lwin N; Fan PF
    Conserv Biol; 2023 Feb; 37(1):e14045. PubMed ID: 36511895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A framework for using niche models to estimate impacts of climate change on species distributions.
    Anderson RP
    Ann N Y Acad Sci; 2013 Sep; 1297():8-28. PubMed ID: 25098379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate.
    Lee H; Reusser DA; Olden JD; Smith SS; Graham J; Burkett V; Dukes JS; Piorkowski RJ; McPhedran J
    Conserv Biol; 2008 Jun; 22(3):575-84. PubMed ID: 18577087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges.
    Kearney M; Porter W
    Ecol Lett; 2009 Apr; 12(4):334-50. PubMed ID: 19292794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change and the past, present, and future of biotic interactions.
    Blois JL; Zarnetske PL; Fitzpatrick MC; Finnegan S
    Science; 2013 Aug; 341(6145):499-504. PubMed ID: 23908227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).
    Meseguer AS; Lobo JM; Ree R; Beerling DJ; Sanmartín I
    Syst Biol; 2015 Mar; 64(2):215-32. PubMed ID: 25398444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral responses of Cao Vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi, China.
    Fan PF; Fei HL; Ma CY
    Am J Primatol; 2012 Jul; 74(7):632-41. PubMed ID: 22553151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology.
    Schröder W
    Int J Med Microbiol; 2006 May; 296 Suppl 40():23-36. PubMed ID: 16600679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora).
    Cordellier M; Pfenninger M
    Mol Ecol; 2009 Feb; 18(3):534-44. PubMed ID: 19161472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Losing ground: past history and future fate of Arctic small mammals in a changing climate.
    Prost S; Guralnick RP; Waltari E; Fedorov VB; Kuzmina E; Smirnov N; van Kolfschoten T; Hofreiter M; Vrieling K
    Glob Chang Biol; 2013 Jun; 19(6):1854-64. PubMed ID: 23505210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population dynamics can be more important than physiological limits for determining range shifts under climate change.
    Fordham DA; Mellin C; Russell BD; Akçakaya RH; Bradshaw CJ; Aiello-Lammens ME; Caley JM; Connell SD; Mayfield S; Shepherd SA; Brook BW
    Glob Chang Biol; 2013 Oct; 19(10):3224-37. PubMed ID: 23907833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of species interactions on geographic range change under climate change.
    Hellmann JJ; Prior KM; Pelini SL
    Ann N Y Acad Sci; 2012 Feb; 1249():18-28. PubMed ID: 22329888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecological change, range fluctuations and population dynamics during the Pleistocene.
    Hofreiter M; Stewart J
    Curr Biol; 2009 Jul; 19(14):R584-94. PubMed ID: 19640497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environment and time as constraints on the biogeographical distribution of gibbons.
    Dunbar RIM; Cheyne SM; Lan D; Korstjens A; Lehmann J; Cowlishaw G
    Am J Primatol; 2019 Jan; 81(1):e22940. PubMed ID: 30604890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new conservation strategy for China-A model starting with primates.
    Pan R; Oxnard C; Grueter CC; Li B; Qi X; He G; Guo S; Garber PA
    Am J Primatol; 2016 Nov; 78(11):1137-1148. PubMed ID: 27383018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.