BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23038286)

  • 1. Optofluidic particle manipulation in a liquid-core/liquid-cladding waveguide.
    Lee KS; Yoon SY; Lee KH; Kim SB; Sung HJ; Kim SS
    Opt Express; 2012 Jul; 20(16):17348-58. PubMed ID: 23038286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources.
    Lim JM; Kim SH; Choi JH; Yang SM
    Lab Chip; 2008 Sep; 8(9):1580-5. PubMed ID: 18818816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic manipulation of particles via transformative optofluidic waveguides.
    Lee KS; Lee KH; Kim SB; Ha BH; Jung JH; Sung HJ; Kim SS
    Sci Rep; 2015 Oct; 5():15170. PubMed ID: 26471003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of liquid-core/liquid-cladding optical waveguides of a sodium chloride solution/water system by computational fluid dynamics.
    Kamiyama J; Asanuma S; Murata H; Sugii Y; Hotta H; Sato K; Tsunoda K
    Appl Spectrosc; 2013 Dec; 67(12):1479-84. PubMed ID: 24359663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel.
    Tang SK; Stan CA; Whitesides GM
    Lab Chip; 2008 Mar; 8(3):395-401. PubMed ID: 18305856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biconcave micro-optofluidic lens with low-refractive-index liquids.
    Song C; Nguyen NT; Asundi AK; Low CL
    Opt Lett; 2009 Dec; 34(23):3622-4. PubMed ID: 19953140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrokinetically tunable optofluidic bi-concave lens.
    Li H; Song C; Luong TD; Nguyen NT; Wong TN
    Lab Chip; 2012 Oct; 12(19):3680-7. PubMed ID: 22777136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure.
    Song C; Nguyen NT; Asundi AK; Low CL
    Opt Lett; 2011 May; 36(10):1767-9. PubMed ID: 21593884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid waveguide-based evanescent wave sensor that uses two light sources with different wavelengths.
    Lim JM; Urbanski JP; Choi JH; Thorsen T; Yang SM
    Anal Chem; 2011 Jan; 83(2):585-90. PubMed ID: 21166447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optofluidic immobility of particles trapped in liquid-filled hollow-core photonic crystal fiber.
    Garbos MK; Euser TG; Russell PS
    Opt Express; 2011 Sep; 19(20):19643-52. PubMed ID: 21996905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens.
    Song C; Luong TD; Kong TF; Nguyen NT; Asundi AK
    Opt Lett; 2011 Mar; 36(5):657-9. PubMed ID: 21368939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability analysis of optofluidic transport on solid-core waveguiding structures.
    Yang AH; Erickson D
    Nanotechnology; 2008 Jan; 19(4):045704. PubMed ID: 21817521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.
    Long X; Bai J; Zhao W; Stoian R; Hui R; Cheng G
    Opt Lett; 2012 Aug; 37(15):3138-40. PubMed ID: 22859111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile Optofluidic Solid-Core/Liquid-Cladding Waveguide Based on Evanescent Wave Excitation.
    Zhang Y; Kenarangi F; Zhang H; Vaziri S; Li D; Pu X; Sun Y
    Anal Chem; 2020 Nov; 92(22):14983-14989. PubMed ID: 33108157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic control of liquid-core/liquid-cladding optical waveguides.
    Wolfe DB; Conroy RS; Garstecki P; Mayers BT; Fischbach MA; Paul KE; Prentiss M; Whitesides GM
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12434-8. PubMed ID: 15314232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planar optofluidic chip for single particle detection, manipulation, and analysis.
    Yin D; Lunt EJ; Rudenko MI; Deamer DW; Hawkins AR; Schmidt H
    Lab Chip; 2007 Sep; 7(9):1171-5. PubMed ID: 17713616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of metal-clad optical waveguide polarizers by the vector beam propagation method.
    Sun L; Yip GL
    Appl Opt; 1994 Feb; 33(6):1047-50. PubMed ID: 20862114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.
    Tien MC; Bauters JF; Heck MJ; Blumenthal DJ; Bowers JE
    Opt Express; 2010 Nov; 18(23):23562-8. PubMed ID: 21164700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-the-fly cross flow laser guided separation of aerosol particles based on size, refractive index and density-theoretical analysis.
    Lall AA; Terray A; Hart SJ
    Opt Express; 2010 Dec; 18(26):26775-90. PubMed ID: 21196954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.