These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. Zeringue C; Dajani I; Naderi S; Moore GT; Robin C Opt Express; 2012 Sep; 20(19):21196-213. PubMed ID: 23037244 [TBL] [Abstract][Full Text] [Related]
9. Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers. Mamdem YS; Burov E; de Montmorillon LA; Jaouën Y; Moreau G; Gabet R; Taillade F Opt Express; 2012 Jan; 20(2):1790-7. PubMed ID: 22274523 [TBL] [Abstract][Full Text] [Related]
10. Polarization averaged short-time Fourier transform technique for distributed fiber birefringence characterization using Brillouin gain. Xie S; Chen L; Bao X Appl Opt; 2012 Jul; 51(19):4359-69. PubMed ID: 22772108 [TBL] [Abstract][Full Text] [Related]
11. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model. Al-Asadi HA; Al-Mansoori MH; Ajiya M; Hitam S; Saripan MI; Mahdi MA Opt Express; 2010 Oct; 18(21):22339-47. PubMed ID: 20941134 [TBL] [Abstract][Full Text] [Related]
12. Generation of squeezed vacuum pulses at 810 nm using a 40-cm-long optical fiber. Nakagome H; Ushio H; Itoh Y; Kannari F Opt Express; 2011 Jan; 19(2):1051-6. PubMed ID: 21263643 [TBL] [Abstract][Full Text] [Related]
13. Brillouin spectroscopy of YAG-derived optical fibers. Dragic P; Law PC; Ballato J; Hawkins T; Foy P Opt Express; 2010 May; 18(10):10055-67. PubMed ID: 20588859 [TBL] [Abstract][Full Text] [Related]
14. Fast and slow light in optical fibers through tilted fiber Bragg gratings. Pisco M; Ricciardi A; Campopiano S; Caucheteur C; Mégret P; Cutolo A; Cusano A Opt Express; 2009 Dec; 17(26):23502-10. PubMed ID: 20052057 [TBL] [Abstract][Full Text] [Related]
15. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. Smith RG Appl Opt; 1972 Nov; 11(11):2489-94. PubMed ID: 20119362 [TBL] [Abstract][Full Text] [Related]
16. Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering. Lagakos N; Bucaro JA; Hughes R Appl Opt; 1980 Nov; 19(21):3668-70. PubMed ID: 20234675 [TBL] [Abstract][Full Text] [Related]
17. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing. Xie S; Pang M; Bao X; Chen L Opt Express; 2012 Mar; 20(6):6385-99. PubMed ID: 22418520 [TBL] [Abstract][Full Text] [Related]
18. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment. Gong Y; Ye AY; Wu Y; Rao YJ; Yao Y; Xiao S Opt Express; 2013 Jul; 21(13):16181-90. PubMed ID: 23842403 [TBL] [Abstract][Full Text] [Related]
19. 18 W single-stage single-frequency acoustically tailored Raman fiber amplifier. Vergien C; Dajani I; Robin C Opt Lett; 2012 May; 37(10):1766-8. PubMed ID: 22627564 [TBL] [Abstract][Full Text] [Related]
20. Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber. Martinez A; Zhou K; Bennion I; Yamashita S Opt Express; 2010 May; 18(11):11008-14. PubMed ID: 20588956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]