These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2303830)

  • 1. Scoliosis in rats with experimentally-induced hemiparkinsonism: dependence upon striatal dopamine denervation.
    Herrera-Marschitz M; Utsumi H; Ungerstedt U
    J Neurol Neurosurg Psychiatry; 1990 Jan; 53(1):39-43. PubMed ID: 2303830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated D1 dopamine receptor agonist administration prevents the development of both D1 and D2 striatal receptor supersensitivity following denervation.
    Hu XT; White FJ
    Synapse; 1992 Mar; 10(3):206-16. PubMed ID: 1532677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical lesions interfere with behavioral recovery from unilateral substantia nigra lesions induced by brain grafts.
    Freed WJ; Cannon-Spoor HE
    Behav Brain Res; 1989 Apr; 32(3):279-88. PubMed ID: 2713080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anodal polarization in the substantia nigra increases rotational behavior in the rat.
    Hayashi Y; Hattori Y; Moriwaki A; Hori Y
    Physiol Behav; 1990 Jul; 48(1):195-8. PubMed ID: 2236271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anatomical substrate of the turning behaviour seen after lesions in the nigrostriatal dopamine system.
    Garcia-Munoz M; Patino P; Wright AJ; Arbuthnott GW
    Neuroscience; 1983 Jan; 8(1):87-95. PubMed ID: 6300729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonatal tail posture and its relationship to striatal dopamine asymmetry in the rat.
    Rosen GD; Finklestein S; Stoll AL; Yutzey DA; Denenberg VH
    Brain Res; 1984 Apr; 297(2):305-8. PubMed ID: 6539141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine receptor sensitivity following nigrostriatal lesion in the aged rat.
    Hirschhorn ID; Makman MH; Sharpless NS
    Brain Res; 1982 Feb; 234(2):357-68. PubMed ID: 7199364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dopamine depletion on rotational behavior to dopamine agonists.
    Gershanik O; Heikkila RE; Duvoisin RC
    Brain Res; 1983 Feb; 261(2):358-60. PubMed ID: 6831221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplantation of mesencephalic cell suspension in dopamine-denervated striatum of the rat.I. Effects on spontaneous activity of striatal neurons.
    Di Loreto S; Florio T; Capozzo A; Napolitano A; Adorno D; Scarnati E
    Exp Neurol; 1996 Apr; 138(2):318-26. PubMed ID: 8620930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of nigrostriatal synaptic circuitry, striatal mRNA expression, and motor symmetry following embryonic substantia nigra grafts.
    Mendez I; Elisevich K; Naus C; Flumerfelt B
    Clin Neurosurg; 1992; 38():180-209. PubMed ID: 1371434
    [No Abstract]   [Full Text] [Related]  

  • 11. Adrenal medulla graft induced recovery of function in an animal model of Parkinson's disease: possible mechanisms of action.
    Becker JB; Curran EJ; Freed WJ
    Can J Psychol; 1990 Jun; 44(2):293-310. PubMed ID: 2200596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of dopaminergic A10 neurons on the motor pattern evoked by substantia nigra (pars compacta) stimulation.
    Piazza PV; Ferdico M; Russo D; Crescimanno G; Benigno A; Amato G
    Behav Brain Res; 1989 Jan; 31(3):273-8. PubMed ID: 2914078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Striatal dopamine and the interface between orienting and ingestive functions.
    Hall S; Schallert T
    Physiol Behav; 1988; 44(4-5):469-71. PubMed ID: 3237839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of striatal dopaminergic mechanisms in rotational behavior induced by phencyclidine and phencyclidine-like drugs.
    Mele A; Wozniak KM; Hall FS; Pert A
    Psychopharmacology (Berl); 1998 Jan; 135(2):107-18. PubMed ID: 9497015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine receptors: effects of chronic L-dopa and bromocriptine treatment in an animal model of Parkinson's disease.
    Schneider MB; Murrin LC; Pfeiffer RF; Deupree JD
    Clin Neuropharmacol; 1984; 7(3):247-57. PubMed ID: 6435870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral and neurochemical differences in an inbred strain of rats.
    Pradhan N; Arunasmitha S; Udaya HB
    Physiol Behav; 1990 Apr; 47(4):705-8. PubMed ID: 2385642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of function after mesotelencephalic dopaminergic injury in senescence.
    Marshall JF; Drew MC; Neve KA
    Brain Res; 1983 Jan; 259(2):249-60. PubMed ID: 6297672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson's disease.
    Yuan H; Sarre S; Ebinger G; Michotte Y
    J Neurosci Methods; 2005 May; 144(1):35-45. PubMed ID: 15848237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial reversal of increased preproenkephalin messenger ribonucleic acid (mRNA) and decreased preprotachykinin mRNA by foetal dopamine cells in unilateral 6-hydroxydopamine-lesioned rat striatum parallels functional recovery.
    Zeng BY; Jenner P; Marsden CD
    Mov Disord; 1996 Jan; 11(1):43-52. PubMed ID: 8771066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory mechanisms in the nigrostriatal dopaminergic system in Parkinson's disease: studies in an animal model.
    Melamed E; Hefti F; Wurtman RJ
    Isr J Med Sci; 1982 Jan; 18(1):159-63. PubMed ID: 6121770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.