These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23038341)

  • 1. Response of plasmonic resonant nanorods: an analytical approach to optical antennas.
    Kalousek R; Dub P; Břínek L; Šikola T
    Opt Express; 2012 Jul; 20(16):17916-27. PubMed ID: 23038341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field coupling and resonant cavity modes in plasmonic nanorod metamaterials.
    Song H; Zhang J; Fei G; Wang J; Jiang K; Wang P; Lu Y; Iorsh I; Xu W; Jia J; Zhang L; Kivshar YS; Zhang L
    Nanotechnology; 2016 Oct; 27(41):415708. PubMed ID: 27607837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spectral shift between near- and far-field resonances of optical nano-antennas.
    Menzel C; Hebestreit E; Mühlig S; Rockstuhl C; Burger S; Lederer F; Pertsch T
    Opt Express; 2014 Apr; 22(8):9971-82. PubMed ID: 24787879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-field resonance at far-field-induced transparency in diffractive arrays of plasmonic nanorods.
    Rodriguez SR; Janssen OT; Lozano G; Omari A; Hens Z; Rivas JG
    Opt Lett; 2013 Apr; 38(8):1238-40. PubMed ID: 23595444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid optical antennas with photonic resistors.
    Butakov NA; Schuller JA
    Opt Express; 2015 Nov; 23(23):29698-707. PubMed ID: 26698451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly ordered Fe-Au heterostructured nanorod arrays and their exceptional near-infrared plasmonic signature.
    Zhang Y; Ashall B; Doyle G; Zerulla D; Lee GU
    Langmuir; 2012 Dec; 28(49):17101-7. PubMed ID: 23101940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.
    Panaretos AH; Werner DH
    Opt Express; 2015 Apr; 23(7):8298-309. PubMed ID: 25968668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional winged nanocone optical antennas.
    Huttunen MJ; Lindfors K; Andriano D; Mäkitalo J; Bautista G; Lippitz M; Kauranen M
    Opt Lett; 2014 Jun; 39(12):3686-9. PubMed ID: 24978568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-port admittance model for quantifying the scattering response of loaded plasmonic nanorod antennas.
    Panaretos AH; Werner DH
    Opt Express; 2015 Feb; 23(4):4459-71. PubMed ID: 25836483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric field enhancements around the nanorod on the base layer.
    Zhang Z; Zhang Z; Zhang L; Huang C; Xiong Z
    Opt Express; 2011 Apr; 19(8):7274-9. PubMed ID: 21503038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
    Giannini V; Berrier A; Maier SA; Sánchez-Gil JA; Rivas JG
    Opt Express; 2010 Feb; 18(3):2797-807. PubMed ID: 20174108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas.
    Pan Z; Guo J
    Opt Express; 2013 Dec; 21(26):32491-500. PubMed ID: 24514842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive plasmonic silver nanorods.
    Jakab A; Rosman C; Khalavka Y; Becker J; Trügler A; Hohenester U; Sönnichsen C
    ACS Nano; 2011 Sep; 5(9):6880-5. PubMed ID: 21851108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements.
    Werley CA; Fan K; Strikwerda AC; Teo SM; Zhang X; Averitt RD; Nelson KA
    Opt Express; 2012 Apr; 20(8):8551-67. PubMed ID: 22513564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic antenna effects on photochemical reactions.
    Gao S; Ueno K; Misawa H
    Acc Chem Res; 2011 Apr; 44(4):251-60. PubMed ID: 21381706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.