These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23038569)

  • 1. InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy.
    Natrella M; Rouvalis E; Liu CP; Liu H; Renaud CC; Seeds AJ
    Opt Express; 2012 Aug; 20(17):19279-88. PubMed ID: 23038569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 170 GHz Uni-Traveling Carrier Photodiodes for InP-based photonic integrated circuits.
    Rouvalis E; Chtioui M; van Dijk F; Lelarge F; Fice MJ; Renaud CC; Carpintero G; Seeds AJ
    Opt Express; 2012 Aug; 20(18):20090-5. PubMed ID: 23037061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance waveguide uni-travelling carrier photodiode grown by solid source molecular beam epitaxy.
    Lin X; Natrella M; Seddon J; Graham C; Renaud CC; Tang M; Wu J; Liu H; Seeds AJ
    Opt Express; 2019 Dec; 27(25):37065-37086. PubMed ID: 31873476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode.
    Namekata N; Adachi S; Inoue S
    Opt Express; 2009 Apr; 17(8):6275-82. PubMed ID: 19365453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides.
    Sheng Z; Liu L; Brouckaert J; He S; Van Thourhout D
    Opt Express; 2010 Jan; 18(2):1756-61. PubMed ID: 20174003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation.
    Parker JS; Sivananthan A; Norberg E; Coldren LA
    Opt Express; 2012 Aug; 20(18):19946-55. PubMed ID: 23037047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved sinusoidal gating with balanced InGaAs/InP Single Photon Avalanche Diodes.
    Lu Z; Sun W; Zhou Q; Campbell J; Jiang X; Itzler MA
    Opt Express; 2013 Jul; 21(14):16716-21. PubMed ID: 23938523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination.
    Zhao Y; Zhang D; Qin L; Tang Q; Wu RH; Liu J; Zhang Y; Zhang H; Yuan X; Liu W
    Opt Express; 2011 Apr; 19(9):8546-56. PubMed ID: 21643105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions.
    Fakhr A; Haddara YM; Lapierre RR
    Nanotechnology; 2010 Apr; 21(16):165601. PubMed ID: 20348594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid planar microresonators with organic and InGaAs active media.
    Mialichi JR; Camposeo A; Persano L; Barea LA; Del Carro P; Pisignano D; Frateschi NC
    Opt Express; 2010 May; 18(11):11650-6. PubMed ID: 20589023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent photon number discrimination of InGaAs/InP avalanche photodiode single-photon detector.
    Jian Y; Wu E; Chen X; Wu G; Zeng H
    Appl Opt; 2011 Jan; 50(1):61-5. PubMed ID: 21221161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy.
    Fujita K; Yamanishi M; Furuta S; Tanaka K; Edamura T; Kubis T; Klimeck G
    Opt Express; 2012 Aug; 20(18):20647-58. PubMed ID: 23037112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High responsivity GaNAsSb p-i-n photodetectors at 1.3 microm grown by radio-frequency nitrogen plasma-assisted molecular beam epitaxy.
    Tan KH; Yoon SF; Loke WK; Wicaksono S; Ng TK; Lew KL; Stöhr A; Fedderwitz S; Weiss M; Jäger D; Saadsaoud N; Dogheche E; Decoster D; Chazelas J
    Opt Express; 2008 May; 16(11):7720-5. PubMed ID: 18545482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip.
    Gassenq A; Hattasan N; Cerutti L; Rodriguez JB; Tournié E; Roelkens G
    Opt Express; 2012 May; 20(11):11665-72. PubMed ID: 22714153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Etched beam splitters in InP/InGaAsP.
    Norberg EJ; Parker JS; Nicholes SC; Kim B; Krishnamachari U; Coldren LA
    Opt Express; 2011 Jan; 19(2):717-26. PubMed ID: 21263611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate.
    Chuang LC; Sedgwick FG; Chen R; Ko WS; Moewe M; Ng KW; Tran TT; Chang-Hasnain C
    Nano Lett; 2011 Feb; 11(2):385-90. PubMed ID: 21174451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ mask designed for selective growth of InAs quantum dots in narrow regions developed for molecular beam epitaxy system.
    Ohkouchi S; Nakamura Y; Ikeda N; Sugimoto Y; Asakawa K
    Rev Sci Instrum; 2007 Jul; 78(7):073908. PubMed ID: 17672774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature.
    Meng X; Tan CH; Dimler S; David JP; Ng JS
    Opt Express; 2014 Sep; 22(19):22608-15. PubMed ID: 25321730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-driven all-optical wavelength converter using novel InGaAsP/InAlGaAs quantum wells.
    Wu TH; Wu JP; Chiu YJ
    Opt Express; 2011 Dec; 19(27):26645-50. PubMed ID: 22274248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy.
    Joyce HJ; Docherty CJ; Gao Q; Tan HH; Jagadish C; Lloyd-Hughes J; Herz LM; Johnston MB
    Nanotechnology; 2013 May; 24(21):214006. PubMed ID: 23619012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.