These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23038580)

  • 1. Spectral tuning of the phosphorescence from metalloporphyrins attached to gold nanorods.
    Djiango M; Ritter K; Müller R; Klar TA
    Opt Express; 2012 Aug; 20(17):19374-81. PubMed ID: 23038580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of superlocalization imaging using Gaussian and dipole emission point-spread functions for modeling gold nanorod luminescence.
    Titus EJ; Willets KA
    ACS Nano; 2013 Jul; 7(7):6258-67. PubMed ID: 23725587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods.
    Ni W; Kou X; Yang Z; Wang J
    ACS Nano; 2008 Apr; 2(4):677-86. PubMed ID: 19206598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres.
    Xiao M; Chen H; Ming T; Shao L; Wang J
    ACS Nano; 2010 Nov; 4(11):6565-72. PubMed ID: 20939510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical charging of single gold nanorods.
    Novo C; Funston AM; Gooding AK; Mulvaney P
    J Am Chem Soc; 2009 Oct; 131(41):14664-6. PubMed ID: 19824726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation enhancement of a quantum dot coupled to a plasmonic antenna.
    Ureña EB; Kreuzer MP; Itzhakov S; Rigneault H; Quidant R; Oron D; Wenger J
    Adv Mater; 2012 Nov; 24(44):OP314-20. PubMed ID: 23027548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles.
    Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H
    Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition.
    Qi WJ; Wu D; Ling J; Huang CZ
    Chem Commun (Camb); 2010 Jul; 46(27):4893-5. PubMed ID: 20539899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo monitoring of intravenously injected gold nanorods using near-infrared light.
    Niidome T; Akiyama Y; Shimoda K; Kawano T; Mori T; Katayama Y; Niidome Y
    Small; 2008 Jul; 4(7):1001-7. PubMed ID: 18581412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction and spectral gaps of surface plasmon modes in gold nano-structures.
    Kolomenskii A; Peng S; Hembd J; Kolomenski A; Noel J; Strohaber J; Teizer W; Schuessler H
    Opt Express; 2011 Mar; 19(7):6587-98. PubMed ID: 21451686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry breaking induced optical properties of gold open shell nanostructures.
    Ye J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Opt Express; 2009 Dec; 17(26):23765-71. PubMed ID: 20052087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.