These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 23038580)
21. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Hu M; Chen J; Li ZY; Au L; Hartland GV; Li X; Marquez M; Xia Y Chem Soc Rev; 2006 Nov; 35(11):1084-94. PubMed ID: 17057837 [TBL] [Abstract][Full Text] [Related]
22. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978 [TBL] [Abstract][Full Text] [Related]
23. Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions. Fischer S; Hallermann F; Eichelkraut T; von Plessen G; Krämer KW; Biner D; Steinkemper H; Hermle M; Goldschmidt JC Opt Express; 2012 Jan; 20(1):271-82. PubMed ID: 22274350 [TBL] [Abstract][Full Text] [Related]
24. Tetrakis(4-sulfonatophenyl)porphyrin-directed assembly of gold nanocrystals: tailoring the plasmon coupling through controllable gap distances. Zhang L; Chen H; Wang J; Li YF; Wang J; Sang Y; Xiao SJ; Zhan L; Huang CZ Small; 2010 Sep; 6(18):2001-9. PubMed ID: 20715071 [TBL] [Abstract][Full Text] [Related]
25. Magnetic tuning of plasmonic excitation of gold nanorods. Wang M; Gao C; He L; Lu Q; Zhang J; Tang C; Zorba S; Yin Y J Am Chem Soc; 2013 Oct; 135(41):15302-5. PubMed ID: 24102489 [TBL] [Abstract][Full Text] [Related]
26. A quantitative study of the environmental effects on the optical response of gold nanorods. Davletshin YR; Lombardi A; Cardinal MF; Juvé V; Crut A; Maioli P; Liz-Marzán LM; Vallée F; Del Fatti N; Kumaradas JC ACS Nano; 2012 Sep; 6(9):8183-93. PubMed ID: 22931408 [TBL] [Abstract][Full Text] [Related]
27. Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. Chen H; Ming T; Zhang S; Jin Z; Yang B; Wang J ACS Nano; 2011 Jun; 5(6):4865-77. PubMed ID: 21524133 [TBL] [Abstract][Full Text] [Related]
28. The erratic emission of pyrene on gold nanoparticles. Battistini G; Cozzi PG; Jalkanen JP; Montalti M; Prodi L; Zaccheroni N; Zerbetto F ACS Nano; 2008 Jan; 2(1):77-84. PubMed ID: 19206550 [TBL] [Abstract][Full Text] [Related]
29. Tunable depolarized light scattering from gold and gold/silver nanorods. Khlebtsov B; Khanadeev V; Khlebtsov N Phys Chem Chem Phys; 2010 Apr; 12(13):3210-8. PubMed ID: 20237711 [TBL] [Abstract][Full Text] [Related]
30. Direct observation of triplet state emission of single molecules: single molecule phosphorescence quenching of metalloporphyrin and organometallic complexes by molecular oxygen and their quenching rate distributions. Mei E; Vinogradov S; Hochstrasser RM J Am Chem Soc; 2003 Oct; 125(43):13198-204. PubMed ID: 14570495 [TBL] [Abstract][Full Text] [Related]
31. Comparative optical study of colloidal anatase titania nanorods and atomically thin wires. Susha AS; Lutich AA; Liu C; Xu H; Zhang R; Zhong Y; Wong KS; Yang S; Rogach AL Nanoscale; 2013 Feb; 5(4):1465-9. PubMed ID: 23322365 [TBL] [Abstract][Full Text] [Related]
32. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. Bigelow NW; Vaschillo A; Iberi V; Camden JP; Masiello DJ ACS Nano; 2012 Aug; 6(8):7497-504. PubMed ID: 22849410 [TBL] [Abstract][Full Text] [Related]
33. [Ultraviolet and blue-violet photoluminescence of gold nanoparticles]. Zhu J; Wang YC Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Feb; 25(2):235-8. PubMed ID: 15852864 [TBL] [Abstract][Full Text] [Related]
34. Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry. Castellana ET; Gamez RC; Gómez ME; Russell DH Langmuir; 2010 Apr; 26(8):6066-70. PubMed ID: 20302283 [TBL] [Abstract][Full Text] [Related]
35. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Guler U; Turan R Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120 [TBL] [Abstract][Full Text] [Related]
36. Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. Zhao L; Ming T; Chen H; Liang Y; Wang J Nanoscale; 2011 Sep; 3(9):3849-59. PubMed ID: 21826320 [TBL] [Abstract][Full Text] [Related]
37. Formation and plasmonic response of self-assembled layers of colloidal gold nanorods and branched gold nanoparticles. Schulz KM; Abb S; Fernandes R; Abb M; Kanaras AG; Muskens OL Langmuir; 2012 Jun; 28(24):8874-80. PubMed ID: 22401603 [TBL] [Abstract][Full Text] [Related]
38. Plasmonic percolation: plasmon-manifested dielectric-to-metal transition. Chen H; Wang F; Li K; Woo KC; Wang J; Li Q; Sun LD; Zhang X; Lin HQ; Yan CH ACS Nano; 2012 Aug; 6(8):7162-71. PubMed ID: 22757659 [TBL] [Abstract][Full Text] [Related]
39. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Zhan Q; Qian J; Li X; He S Nanotechnology; 2010 Feb; 21(5):055704. PubMed ID: 20023304 [TBL] [Abstract][Full Text] [Related]
40. Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions. Xiang M; Xu X; Liu F; Li N; Li KA J Phys Chem B; 2009 Mar; 113(9):2734-8. PubMed ID: 19708110 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]