These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23038597)

  • 1. Antireflective disordered subwavelength structure on GaAs using spin-coated Ag ink mask.
    Yeo CI; Kwon JH; Jang SJ; Lee YT
    Opt Express; 2012 Aug; 20(17):19554-62. PubMed ID: 23038597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic subwavelength antireflective gratings on GaAs.
    Sun CH; Ho BJ; Jiang B; Jiang P
    Opt Lett; 2008 Oct; 33(19):2224-6. PubMed ID: 18830359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate.
    Lee YC; Chang CC; Chou YY
    Opt Express; 2013 Jan; 21 Suppl 1():A36-41. PubMed ID: 23389273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light trapping enhancement induced by bimetallic non-alloyed nanoparticles on a disordered subwavelength flexible thin film crystalline silicon substrate using metal-assisted chemical etching.
    Lee SK; Tan CL; Lee YT
    Opt Lett; 2017 Feb; 42(3):431-434. PubMed ID: 28146494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles.
    Kim JB; Yeo CI; Lee YH; Ravindran S; Lee YT
    Nanoscale Res Lett; 2014 Feb; 9(1):54. PubMed ID: 24484636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Dec; 19(27):26308-17. PubMed ID: 22274215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AuAg bimetallic nonalloyed nanoparticles on a periodically nanostructured GaAs substrate for enhancing light trapping.
    Lee SK; Tan CL; Ju GW; Song JH; Yeo CI; Lee YT
    Opt Lett; 2015 Dec; 40(24):5798-801. PubMed ID: 26670515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of silver nanowires on GaAs wafers.
    Sun Y
    Nanoscale; 2011 May; 3(5):2247-55. PubMed ID: 21483977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antireflective hydrophobic si subwavelength structures using thermally dewetted Ni/SiO2 nanomask patterns.
    Joo DH; Leem JW; Yu JS
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10130-5. PubMed ID: 22413355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.
    Park GC; Song YM; Ha JH; Lee YT
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6152-6. PubMed ID: 22121676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency enhancement in GaAs solar cells using self-assembled microspheres.
    Chang TH; Wu PH; Chen SH; Chan CH; Lee CC; Chen CC; Su YK
    Opt Express; 2009 Apr; 17(8):6519-24. PubMed ID: 19365476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband and omnidirectional antireflection employing disordered GaN nanopillars.
    Chiu CH; Yu P; Kuo HC; Chen CC; Lu TC; Wang SC; Hsu SH; Cheng YJ; Chang YC
    Opt Express; 2008 Jun; 16(12):8748-54. PubMed ID: 18545588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.
    Yang T; Wang X; Liu W; Shi Y; Yang F
    Opt Express; 2013 Jul; 21(15):18207-15. PubMed ID: 23938691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications.
    Yeo C; Kim JB; Song YM; Lee YT
    Nanoscale Res Lett; 2013 Apr; 8(1):159. PubMed ID: 23566597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of GaAs subwavelength structure (SWS) for solar cell applications.
    Kim BJ; Kim J
    Opt Express; 2011 May; 19 Suppl 3():A326-30. PubMed ID: 21643374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A GaAs phononic crystal with shallow noncylindrical holes.
    Petrus JA; Mathew R; Stotz JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):364-8. PubMed ID: 24474141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow light in the GaAs-rod-loaded metallic waveguide for terahertz wave.
    Wang W; He J; Li X; Hong Z
    Opt Express; 2010 May; 18(11):11132-7. PubMed ID: 20588972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabry-PĂ©rot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure.
    Yang L; Motohisa J; Fukui T; Jia LX; Zhang L; Geng MM; Chen P; Liu YL
    Opt Express; 2009 May; 17(11):9337-46. PubMed ID: 19466186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disordered antireflective subwavelength structures using Ag nanoparticles on fused silica windows.
    Shang P; Xiong SM; Deng QL; Shi LF; Zhang M
    Appl Opt; 2014 Oct; 53(29):6789-96. PubMed ID: 25322384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.