These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum. Jackson KE; Pham JS; Kwek M; De Silva NS; Allen SM; Goodman CD; McFadden GI; Ribas de Pouplana L; Ralph SA Int J Parasitol; 2012 Feb; 42(2):177-86. PubMed ID: 22222968 [TBL] [Abstract][Full Text] [Related]
7. Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga. Hirakawa Y; Burki F; Keeling PJ Mol Microbiol; 2011 Jun; 80(6):1439-49. PubMed ID: 21470316 [TBL] [Abstract][Full Text] [Related]
9. Defining the determinants for dual targeting of amino acyl-tRNA synthetases to mitochondria and chloroplasts. Berglund AK; Pujol C; Duchene AM; Glaser E J Mol Biol; 2009 Nov; 393(4):803-14. PubMed ID: 19733576 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNA Met formylation in Apicomplexa. Pino P; Aeby E; Foth BJ; Sheiner L; Soldati T; Schneider A; Soldati-Favre D Mol Microbiol; 2010 May; 76(3):706-18. PubMed ID: 20374492 [TBL] [Abstract][Full Text] [Related]
11. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Hirakawa Y; Burki F; Keeling PJ Eukaryot Cell; 2012 Mar; 11(3):324-33. PubMed ID: 22267775 [TBL] [Abstract][Full Text] [Related]
12. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
13. Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga. Hirakawa Y; Ishida K Plant J; 2010 Nov; 64(3):402-10. PubMed ID: 21049565 [TBL] [Abstract][Full Text] [Related]
14. Organellar DNA Polymerases in Complex Plastid-Bearing Algae. Hirakawa Y; Watanabe A Biomolecules; 2019 Apr; 9(4):. PubMed ID: 30959949 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Kilian O; Kroth PG Plant J; 2005 Jan; 41(2):175-83. PubMed ID: 15634195 [TBL] [Abstract][Full Text] [Related]
16. Prospective function of FtsZ proteins in the secondary plastid of chlorarachniophyte algae. Hirakawa Y; Ishida K BMC Plant Biol; 2015 Nov; 15():276. PubMed ID: 26556725 [TBL] [Abstract][Full Text] [Related]
17. Dual targeting to mitochondria and chloroplasts: characterization of Thr-tRNA synthetase targeting peptide. Berglund AK; Spånning E; Biverståhl H; Maddalo G; Tellgren-Roth C; Mäler L; Glaser E Mol Plant; 2009 Nov; 2(6):1298-309. PubMed ID: 19995731 [TBL] [Abstract][Full Text] [Related]
18. Plastids and protein targeting. McFadden GI J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382 [TBL] [Abstract][Full Text] [Related]
19. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Tonkin CJ; Struck NS; Mullin KA; Stimmler LM; McFadden GI Mol Microbiol; 2006 Aug; 61(3):614-30. PubMed ID: 16787449 [TBL] [Abstract][Full Text] [Related]
20. Two proteomic methodologies for defining N-termini of mature human mitochondrial aminoacyl-tRNA synthetases. Carapito C; Kuhn L; Karim L; Rompais M; Rabilloud T; Schwenzer H; Sissler M Methods; 2017 Jan; 113():111-119. PubMed ID: 27793688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]