These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23039067)

  • 1. Dependence of mechanical properties of lacewing egg stalks on relative humidity.
    Bauer F; Bertinetti L; Masic A; Scheibel T
    Biomacromolecules; 2012 Nov; 13(11):3730-5. PubMed ID: 23039067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial egg stalks made of a recombinantly produced lacewing silk protein.
    Bauer F; Scheibel T
    Angew Chem Int Ed Engl; 2012 Jun; 51(26):6521-4. PubMed ID: 22593030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fifty years later: the sequence, structure and function of lacewing cross-beta silk.
    Weisman S; Okada S; Mudie ST; Huson MG; Trueman HE; Sriskantha A; Haritos VS; Sutherland TD
    J Struct Biol; 2009 Dec; 168(3):467-75. PubMed ID: 19580871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanics of silk nanostructures under varied mechanical loading.
    Bratzel G; Buehler MJ
    Biopolymers; 2012 Jun; 97(6):408-17. PubMed ID: 22020792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Jul; 209(Pt 13):2452-61. PubMed ID: 16788028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unlikely silk: the composite material of green lacewing cocoons.
    Weisman S; Trueman HE; Mudie ST; Church JS; Sutherland TD; Haritos VS
    Biomacromolecules; 2008 Nov; 9(11):3065-9. PubMed ID: 18828638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering the mechanics of spider silk through methanol post-spin drawing.
    Brooks AE; Creager MS; Lewis RV
    Biomed Sci Instrum; 2005; 41():1-6. PubMed ID: 15850073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of loading rate on mechanical properties and fracture morphology of spider silk.
    Hudspeth M; Nie X; Chen W; Lewis R
    Biomacromolecules; 2012 Aug; 13(8):2240-6. PubMed ID: 22780301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk.
    Keten S; Xu Z; Ihle B; Buehler MJ
    Nat Mater; 2010 Apr; 9(4):359-67. PubMed ID: 20228820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of essential design features in coiled coil silks.
    Sutherland TD; Weisman S; Trueman HE; Sriskantha A; Trueman JW; Haritos VS
    Mol Biol Evol; 2007 Nov; 24(11):2424-32. PubMed ID: 17703050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of embiopteran silks reveals tensile and structural similarities across Taxa.
    Collin MA; Camama E; Swanson BO; Edgerly JS; Hayashi CY
    Biomacromolecules; 2009 Aug; 10(8):2268-74. PubMed ID: 19572641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider capture silk: performance implications of variation in an exceptional biomaterial.
    Swanson BO; Blackledge TA; Hayashi CY
    J Exp Zool A Ecol Genet Physiol; 2007 Nov; 307(11):654-66. PubMed ID: 17853401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea.
    Neuenfeldt M; Scheibel T
    Biomolecules; 2017 Jun; 7(2):. PubMed ID: 28608840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi.
    Zhao AC; Zhao TF; Nakagaki K; Zhang YS; Sima YH; Miao YG; Shiomi K; Kajiura Z; Nagata Y; Takadera M; Nakagaki M
    Biochemistry; 2006 Mar; 45(10):3348-56. PubMed ID: 16519529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spider dragline silk: correlated and mosaic evolution in high-performance biological materials.
    Swanson BO; Blackledge TA; Summers AP; Hayashi CY
    Evolution; 2006 Dec; 60(12):2539-51. PubMed ID: 17263115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology and tensile properties of silk fibers produced by uncommon Saturniidae.
    Reddy N; Yang Y
    Int J Biol Macromol; 2010 May; 46(4):419-24. PubMed ID: 20211646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.
    Bratzel G; Buehler MJ
    J Mech Behav Biomed Mater; 2012 Mar; 7():30-40. PubMed ID: 22340682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.