These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
928 related articles for article (PubMed ID: 23039071)
21. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state). Ogata H; Kellers P; Lubitz W J Mol Biol; 2010 Sep; 402(2):428-44. PubMed ID: 20673834 [TBL] [Abstract][Full Text] [Related]
22. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. De La Cruz C; Sheppard N Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. Ulloa OA; Huynh MT; Richers CP; Bertke JA; Nilges MJ; Hammes-Schiffer S; Rauchfuss TB J Am Chem Soc; 2016 Jul; 138(29):9234-45. PubMed ID: 27328053 [TBL] [Abstract][Full Text] [Related]
24. Nickel-iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site. Barton BE; Whaley CM; Rauchfuss TB; Gray DL J Am Chem Soc; 2009 May; 131(20):6942-3. PubMed ID: 19413314 [TBL] [Abstract][Full Text] [Related]
25. Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures. Schilter D; Rauchfuss TB; Stein M Inorg Chem; 2012 Aug; 51(16):8931-41. PubMed ID: 22838645 [TBL] [Abstract][Full Text] [Related]
26. Active-site models for the nickel-iron hydrogenases: effects of ligands on reactivity and catalytic properties. Carroll ME; Barton BE; Gray DL; Mack AE; Rauchfuss TB Inorg Chem; 2011 Oct; 50(19):9554-63. PubMed ID: 21866886 [TBL] [Abstract][Full Text] [Related]
27. Photoexcitation in Cu(I) and Re(I) complexes containing substituted dipyrido[3,2-a:2',3'-c]phenazine: a spectroscopic and density functional theoretical study. Walsh PJ; Gordon KC; Lundin NJ; Blackman AG J Phys Chem A; 2005 Jul; 109(26):5933-42. PubMed ID: 16833927 [TBL] [Abstract][Full Text] [Related]
28. DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6: a simple functional model of the [FeFe] hydrogenase active site. Bertini L; Greco C; De Gioia L; Fantucci P J Phys Chem A; 2009 May; 113(19):5657-70. PubMed ID: 19378958 [TBL] [Abstract][Full Text] [Related]
29. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase. Li Z; Ohki Y; Tatsumi K J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562 [TBL] [Abstract][Full Text] [Related]
30. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S; Schwartz L; Stein M; Ott S; Haumann M Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829 [TBL] [Abstract][Full Text] [Related]
31. Vibrational markers for the open-shell character of transition metal bis-dithiolenes: an infrared, resonance raman, and quantum chemical study. Petrenko T; Ray K; Wieghardt KE; Neese F J Am Chem Soc; 2006 Apr; 128(13):4422-36. PubMed ID: 16569020 [TBL] [Abstract][Full Text] [Related]
32. The Molecular Proceedings of Biological Hydrogen Turnover. Haumann M; Stripp ST Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117 [TBL] [Abstract][Full Text] [Related]
33. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer. Yang X; Hall MB J Am Chem Soc; 2009 Aug; 131(31):10901-8. PubMed ID: 19722671 [TBL] [Abstract][Full Text] [Related]
34. Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Foerster S; Stein M; Brecht M; Ogata H; Higuchi Y; Lubitz W J Am Chem Soc; 2003 Jan; 125(1):83-93. PubMed ID: 12515509 [TBL] [Abstract][Full Text] [Related]
35. Targeting intermediates of [FeFe]-hydrogenase by CO and CN vibrational signatures. Yu L; Greco C; Bruschi M; Ryde U; De Gioia L; Reiher M Inorg Chem; 2011 May; 50(9):3888-900. PubMed ID: 21443182 [TBL] [Abstract][Full Text] [Related]
36. Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site. Schilter D; Nilges MJ; Chakrabarti M; Lindahl PA; Rauchfuss TB; Stein M Inorg Chem; 2012 Feb; 51(4):2338-48. PubMed ID: 22304696 [TBL] [Abstract][Full Text] [Related]
37. A strenuous experimental journey searching for spectroscopic evidence of a bridging nickel-iron-hydride in [NiFe] hydrogenase. Wang H; Yoda Y; Ogata H; Tanaka Y; Lubitz W J Synchrotron Radiat; 2015 Nov; 22(6):1334-44. PubMed ID: 26524296 [TBL] [Abstract][Full Text] [Related]
38. Spectroscopic and computational studies of a trans-mu-1,2-disulfido-bridged dinickel species, [{(tmc)Ni}(2)(S(2))](OTf)(2): comparison of end-on disulfido and peroxo bonding in (Ni(II))(2) and (Cu(II))(2) species. Van Heuvelen KM; Kieber-Emmons MT; Riordan CG; Brunold TC Inorg Chem; 2010 Apr; 49(7):3104-12. PubMed ID: 20199095 [TBL] [Abstract][Full Text] [Related]
39. Series of mixed valent Fe(II)Fe(I) complexes that model the Hox state of [FeFe]hydrogenase: redox properties, density-functional theory investigation, and reactivities with extrinsic CO. Thomas CM; Liu T; Hall MB; Darensbourg MY Inorg Chem; 2008 Aug; 47(15):7009-24. PubMed ID: 18597449 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and vibrational spectroscopy of (57)Fe-labeled models of [NiFe] hydrogenase: first direct observation of a nickel-iron interaction. Schilter D; Pelmenschikov V; Wang H; Meier F; Gee LB; Yoda Y; Kaupp M; Rauchfuss TB; Cramer SP Chem Commun (Camb); 2014 Nov; 50(88):13469-72. PubMed ID: 25237680 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]